1. Field of the Invention
The present invention relates to an integrally formed casing for a heat-dissipating fan. In particular, the present invention relates to a heat-dissipating fan casing that is integrally formed by means of punching a magnetically conductive plate to reduce the number of parts of the casing and the stator, to reduce an overall thickness, and to simplify the structure of the heat-dissipating fan.
2. Description of Related Art
The object of the present invention is to provide a heat-dissipating fan casing that is integrally formed by means of punching a magnetically conductive plate to reduce the number of parts of the casing and the stator, to simplify the structure of the heat-dissipating fan, and to reduce the manufacture cost.
Another object of the present invention is to a heat-dissipating fan casing that is integrally formed by means of punching a magnetically conductive plate, wherein the base and the magnetic pole faces that are formed by means of punching are used to mount a coil assembly and a circuit board for a stator. Thus, the parts of the stator are not all stacked in an axial direction, thereby reducing the overall thickness of the heat-dissipating fan.
To achieve the aforementioned objects, the present invention provides a casing for a heat-dissipating fan, wherein the casing includes a bottom board and a plurality of sidewalls extending from the bottom board. The bottom board and the sidewalls are integrally formed by means of punching a magnetically conductive plate. The bottom board includes a base on which a stator having a coil assembly is mounted. An axial hole is defined in the base of the bottom board, and a bearing is mounted in the axial hole for rotatably holding a shaft of a rotor. A plurality of magnetic pole faces are formed on the base of the bottom board by means of punching the base of the bottom board. The magnetic pole faces surround the axial hole and are adjacent to the coil assembly of the stator.
Other objects, advantages and novel features of this invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The present invention is now to be described hereinafter in detail, in which the same reference numerals are used for the same parts as those in the prior art.
Referring to
Parts for a stator such as a coil assembly 20 and a circuit board 40 are mounted on the base 12. An axle tube 14 is mounted to a central portion of the base 12. Alternatively, the axle tube 14 is formed by means of punching; namely, the axle tube 14 is integral with the base 12. The coil assembly 20 and the circuit board 40 are mounted around the axle tube 14. Further, a plurality of magnetic pole faces 13 that are formed by means of punching the base 12 (see the holes 131 after punching), with the magnetic pole faces 13 being spaced by angular intervals around the an axial hole 141 defined in the axle tube 14. The magnetic pole faces 13 are adjacent to the coil assembly 20.
A bearing 142 is mounted in the axial hole 141 for rotatably holding a shaft 31 of a rotor 30. Also mounted in the axial hole 141 is a support member 143 on which a distal end of the shaft 31 of the rotor 30 rests, providing a stable rotation for the rotor 30. After the shaft 31 of the rotor 30 is extended through the bearing 142 and retained in place by a retainer 311, a permanent magnet 33 on the rotor 30 and the magnetic pole faces 13 of the base 12 have an appropriate radial gap therebetween. Thus, when the coil assembly 20 is energized under the control of the drive circuit (not labeled) on the circuit boar 40, alternating magnetic fields are created in the radial gap by the magnetic pole faces 13, thereby driving the rotor 30 and its blades 32 to turn.
As shown in
Referring to
As described above, a single magnetically conductive plate 1 is directly punched to form a casing 10 with the sidewalls 101, the ribs 11, the bottom board 10a with the base 12, the magnetic pole faces 13, and the axial hole 141, with the circuit board 40, the coil assembly 20, and the magnetic pole faces 13 being preferably arranged in a radial direction on the bottom board 10a. The number of the parts of the casing and the stator of the heat-dissipating fan and the overall thickness in the axial direction of the heat-dissipating fan are decreased without sacrificing the functions. Thus, the heat-dissipating fan and the casing 10 in accordance with the present invention can be used in notebook type computers as well as other delicate electronic devices.
While the principles of this invention have been disclosed in connection with specific embodiments, it should be understood by those skilled in the art that these descriptions are not intended to limit the scope of the invention, and that any modification and variation without departing the spirit of the invention is intended to be covered by the scope of this invention defined only by the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 92107454 A | Mar 2003 | TW | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 3448306 | Murray | Jun 1969 | A |
| 3558940 | Chestnut et al. | Jan 1971 | A |
| 4059780 | Mazuir | Nov 1977 | A |
| 5176509 | Schmider et al. | Jan 1993 | A |
| 5831359 | Jeske | Nov 1998 | A |
| 5879141 | Yokozawa et al. | Mar 1999 | A |
| 6239971 | Yu et al. | May 2001 | B1 |
| 6270325 | Hsieh | Aug 2001 | B1 |
| 6525938 | Chen | Feb 2003 | B1 |
| Number | Date | Country |
|---|---|---|
| 58-127549 | Jul 1983 | JP |
| Number | Date | Country | |
|---|---|---|---|
| 20040191095 A1 | Sep 2004 | US |