Vehicle transmission systems, cooling systems, and braking systems may employ clutches or like devices to selectively transmit rotational forces from a drive source to an output member. For example, some cooling systems employ fan clutch devices that control the output rotation of engine cooling fans. Such a fan clutch can be driven by a drive pulley that rotates in response to the vehicle engine.
In general, the clutch can be operated to engage (or disengage) opposing clutch surfaces, which rotationally interconnect (or rotationally disconnect) the drive pulley and the output member. In an example related to fan clutches, when the clutch surfaces shifted to the engaged position, the output member (carrying fan blades) is driven to rotate along with the drive pulley. However, when the clutch surfaces are shifted to the disengaged position, the output member is no longer directly urged by the drive pulley.
Some embodiments of a clutch system may drive an output member to rotate at a first speed when the clutch surfaces are engaged and to rotate at a second speed when the clutch surfaces are shifted to a disengaged position. In particular embodiments, the multi-speed clutch system may employ an eddy current drive system that is arranged axially rearward of the clutch surfaces to cause the output member to rotate even when the clutch surfaces are disengaged. Such an arrangement of the eddy current drive components can provide ample space for heat dissipation structures along the periphery of the eddy current drive system, especially in some embodiments in which the cooling fins of the eddy current drive system extend radially outward for exposure to the air flow path from a fan blade device mounted to a forward face of the output member.
The multi-speed clutch device can be useful, for example, to control the rotation of a cooling fan in a vehicle cooling system, such as a cooling system in semi-trucks, buses, vocational equipment (e.g., garbage trucks), or construction equipment vehicles. In such circumstances, the cooling fan can be driven to rotate at a first speed due to rotational interconnection with a drive pulley when the clutch surfaces are engaged and to rotate at a second speed even when the clutch surfaces are disengaged. Thus, the clutch system facilitates the flow of cooling air both when the vehicle cooling system activates the fan (e.g., by causing the clutch surfaces to engage) and when the vehicle cooling system deactivates the fan (e.g., by causing the clutch surfaces to disengage). Accordingly, the vehicle engine can be maintained below high-temperature threshold for greater periods of time, thereby reducing the number of times and the time duration that the fan clutch device must be engaged to rotate the fan blades at the first, full speed. As a result, the fuel efficiency of the vehicle may be substantially increased due to the reduction in load upon the engine caused by the full speed rotation of the fan blade device.
These and other embodiments described herein may be configured to provide one or more of the following advantages. First, some embodiments of the clutch devices described herein can drive an output member to rotate at a first speed when the clutch surfaces are engaged and to rotate at a second speed when the clutch surfaces are shifted to a disengaged position. In particular, the clutch device can employ an eddy current drive system that urges the output member of the clutch device to rotate at the second speed (which may be slower than the first speed).
Second, the eddy current drive components (e.g., permanent magnets and an opposing eddy current ring) can be positioned axially rearward of the friction drive surfaces while the fan blade device is positioned axially forward of the friction drive surfaces. Such an arrangement can provide additional space for cooling fins along a periphery of one or more eddy current drive components without interfering with the operation of the fan blade device. Further, such an arrangement provides an operable eddy current drive system without substantially increasing the size of the clutch device in the region that is radially outward of the friction clutch components.
Third, some embodiments of the clutch device can be implemented with a cooling fan so as to provide different levels of air flow output from the cooling fan. For example, the fan clutch device can be useful for cooling systems in some vehicles that operate with extended periods of idle, such as semi-trucks, buses, vocational equipment (e.g., garbage trucks), or construction equipment vehicles. In such circumstances, the fan clutch device facilitates the flow of cooling air both when the vehicle cooling system activates the fan (e.g., by causing the clutch surfaces to engage) and when the vehicle cooling system deactivates the fan (e.g., by causing the clutch surfaces to disengage). As described below, periods of increased noise from the vehicle cooling fan rotating at the first (higher) speed can be reduced or eliminated due to the flow of cooling air from the fan rotating at the second (slower) speed.
Fourth, the eddy current drive system of the clutch device may include permanent magnets that are arranged adjacent to the electrically conductive ring in a manner that provides consistent operation and efficient dissipation of heat from the eddy current drive components. For example, in some embodiments, the conductive ring can be arranged radially outward from the permanent magnets so that the heat generated by the production of eddy currents in the conductive ring can be dissipated radially outward through a plurality of cooling fins. Also, the conductive ring (and the cooling fins attached thereto) can rotate at the first (higher) speed with the drive pulley during operation, thereby causing the cooling fins to generate increased air movement that enhances the heat dissipation from the conductive ring.
Fifth, the conductive ring of the eddy current drive system can be formed from a generally nonmagnetic material such as aluminum or the like. In such circumstances, the ring is not necessarily attracted or repelled by the magnets during assembly, which reduces the complexity of aligning and assembling components of the clutch device. Furthermore, in those embodiments in which the conductive ring is formed from a nonmagnetic material such as aluminum or the like, the conductive ring may have a lower mass (e.g., compared to some magnetic materials such as steel) and more efficient heat dissipation properties.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
As described in more detail below, some embodiments of the clutch device 100 can include an input member 110 and an output member 120 (
Such a multi-speed clutch system can be effective to provide different levels of airflow output from the fan blade device 180. For example, some vehicles may operate with extended periods of idle, such as semi-trucks, buses, vocational equipment (e.g., garbage trucks), or construction equipment vehicles, so the cooling system may periodically activate the clutch device 100 to start rotation of fan blade device 180 to cool the engine. The highspeed rotation of the fan blades in these vehicles might be noticeably loud to both passengers (inside the vehicle cabin) and pedestrians (outside the vehicle cabin), especially when the vehicle is running at idle. However, the clutch device 100 described herein can be implemented within the vehicle cooling systems so that the fan blades are rotated at a second speed even when the cooling system has not activated the clutch device 100 to frictionally engage the friction ring 152 with the friction surface 112. The second speed of the fan blade device 180 may be less than the first speed, and thus the noise from the fan blade device 180 may be reduced. Furthermore, the clutch device 100 facilitates the flow of cooling air both when the vehicle cooling controller activates the fan (e.g., by causing the clutch friction surfaces to engage) and when the vehicle cooling controller deactivates the fan (e.g., by causing the clutch friction surfaces to disengage). Thus, the vehicle's engine temperature can be maintained below a threshold level for a greater period of time, which reduces the frequency that clutch device 100 must be activated by the cooling system to rotate the cooling fan at the first (and perhaps louder) speed.
Briefly, in operation, the clutch system 10 may include a drive source such as the drive pulley 190 that is rotated at a first speed due to connection with an engine output shaft via a belt, chain, gear, or the like. (Note that the fan blade device 180 and the drive pulley 190 are removed from
The friction ring 152 and the friction surface 112, in some implementations, are generally defined by a frusto-conical friction interface in which the radius of the frusto-conical friction interface increases as the frusto-conical friction interface extends away from the drive pulley 190. Conversely, the radius of the frusto-conical friction interface may increase as the frusto-conical friction interface extends towards the drive pulley 190. The friction ring 152 may comprise a metallic, ceramic or other material that is capable of providing frictional engagement and is capable of dissipating heat generated at the frictional interface. For example, some embodiments of the friction ring 152 may comprise a material having a static coefficient or friction in the range of approximately 0.2 to approximately 0.6 and, in particular embodiments, may comprise a material having a static coefficient of friction in the range of approximately 0.4 to approximately 0.5. The shape and orientation of the frusto-conical friction ring 152 and the friction surface 112 may provide the clutch device 100 with a conical wedging action. This conical wedging action may improve the engagement friction, thereby providing enhanced torque transfer capabilities. In other implementations, the friction ring 152 and the friction surface 112 are defined by a substantially flat friction interface.
Still referring to
The eddy current drive system 170 further includes an eddy current ring 178 formed substantially of an electrically conductive material (e.g., aluminum in this embodiment), which is spaced apart from the permanent magnets 172 by a small air gap. The eddy current ring 178 can be mounted to the input member 110 via a set of mounting bolts (not shown). For example, the eddy current ring 178 may have a central portion that abuts with a radial face of the input member 110 such that mounting holes (not shown) in the eddy current ring 178 align with the mounting holes 114 of the input member 110. Thus, when the drive pulley is bolted to the input member 110, the eddy current ring 178 is sandwiched therebetween and rotates with the drive pulley 190 and the input member 110. Accordingly, when the friction ring 152 is shifted to disengage the friction surface 112 so that the output member 120 rotates relative to the input member 110, the permanent magnets 172 (coupled with the output member 120) can move relative to the eddy current ring 178 (coupled to the input member 110). Such relative movement may cause eddy currents to be generated in the eddy current ring 178, which produces a force between the eddy current ring 178 and the permanent magnets 172. Because the eddy current ring 178 is rotated at the first speed along with the input member 110, the force between the permanent magnets 172 and the eddy current ring 178 causes the magnet mounting plate 174 to thereby drive the output member 120 to rotate at the second speed (which may be less than the first speed).
Referring again to
As shown in
The fluid-receiving fluid receiving chamber 140 may be at least partially defined by a front face of the piston 124 and a nose cap 142. The nose cap 142 can be mounted to a forward end of the central shaft 126, and thus remains generally fixed relative to the stationary central shaft 126. As such, when pressurized air is delivered into the fluid-receiving fluid receiving chamber 140, the piston 124 is adjusted a small distance in an axially rearward direction relative to the nose cap 142 and the central shaft 126. A seal ring 168 and a dust wiper 169 can be arranged proximate to an outer periphery of the piston 124 so as to seal the single leak path at the periphery.
Still referring to
The second spring-engaging member 125b abuts with an inner race of the rear bearing 128b, which also abuts on an opposite side with a collar 127 of the central shaft 126. Accordingly, the rear bearing 128b remains generally axially stationary with the central shaft 126 while the forward bearing 128a can axially adjust relative to the central shaft 126 (as previously described). The input member 110 is mounted on the rear bearing 128 so that the input member 110 is rotatable relative to the central shaft 126 but remains axially stationary relative to the central shaft 126. The output member 120 is mounted on the forward bearing 128a so that the output member 120 is rotatable relative to the central shaft 126 and is axially adjustable relative to the central shaft 126 when the piston 124 and forward bearing 128a are axially shifted.
Still referring to
The fan-mounting region 164 of the output member 120 is configured to receive a fan blade device 180 (as shown in
In various implementations, the eddy current ring 178 can include a number of cooling fins 179. In the example of the clutch device 100, the cooling fins 179 extend radially outward from the outer periphery of the eddy current ring 178. For example, the cooling fins 179 can be formed of the same material as the eddy current ring 178 (e.g., machined into a single piece of metal). The cooling fins 179, for example, may extend substantially from a point radially outward of the outer position of the permanent magnets 172. In other implementations, the cooling fins 179 are coupled to the eddy current ring 178. In other embodiments, cooling fins may additionally or alternatively be formed in or otherwise coupled to the magnet mounting plate 174. In some embodiments, the cooling fins 179 may be formed in such an arrangement to provide effective dissipation of heat that may be generated in the eddy current ring 178 when the input member 110 and output member 120 are not frictionally engaged. For example, the described radial arrangement may place the cooling fins 179 in a flow of air generated by rotation of the fan blades 182. In the embodiment illustrated in
In some embodiments, this arrangement can provide sufficient space for the eddy drive system 170 components and the cooling fins 179 without having to increase the outer radius of the clutch device 100 in the region that is directly radially outward from an engagement surface 154 and the friction surface 112. For example, by not increasing the outer radius of the clutch device 100, the clutch device 100 may be implemented to retrofit a friction-only (e.g., engaged or disengaged) clutch system with one that provides two speed operation (e.g., eddy coupled or frictionally coupled). A conversion kit may include the magnet mounting plate 174, the eddy current ring 178, the cooling fins 179, the set of permanent magnets 172, and appropriate tools and fasteners to couple the components of the eddy drive system 170 to the friction-only clutch system. In some implementations, the eddy current ring 178 and the magnet mounting plate 174 may be designed to be detachably coupled to an input member and an output member of the friction-only clutch system, respectively, and to be able to rotate relatively during the disengagement of the friction-only clutch system. The set of permanent magnets 172 may be magnetically coupled to the magnet mounting plate 174. Accordingly, the relative rotation between the permanent magnets 172 and the eddy current ring 178 may generate an eddy current in the eddy current ring 178, in which the resulting magnetic force urges the permanent magnets 172, and therefore the output member of the friction-only clutch system, to rotate at the second speed during the disengagement of the friction-only clutch system.
In some implementations of the clutch device 100, when the fan blade device 180 spins during engagement, it can produce a thrust component substantially in the same direction as the spring force. This force can increase the overall frictional force between the input and output members 110, 120, which can increase the torque of the output member 120. In selective embodiments, the thrust component from the rotation of the fan blade device during the engagement of the clutch device 100 can depend on the number of fan blades, diameter of the fan blade device, and the first speed. Example number of fan blades may be 5, 7, 9, 11, or 13. The diameter of the fan blade device may range from about 20 inches to about 30 inches, about 25 inches to about 35 inches, or about 30 inches to about 40 inches. The diameter of the fan blade device may be about 36 inches, for example. Increasing the number of fan blades, the diameter of the fan blade device, or both, can lead to higher thrust component. Also, during the engagement of the clutch device, the first speed of the fan blade device can be substantially similar to rotational speed of the drive pulley 190, which may vary according to the rotational speed of the engine output shaft. Increasing the first speed can increase the thrust component.
Referring now to
As shown in
Accordingly, the friction drive system 150 of the clutch device 200 (
The clutch device 200 depicted in
As previously described, when the output member 120 is not frictionally engaged to the input member 110 (via the friction ring 152), the output member 120 is not driven to rotate at the same speed as the input member 110. Due to this relative rotation between the input member 110 and the output member 120, the eddy current ring 278 is driven to rotate relative to the set of permanent magnets 272. In some implementations, eddy currents may be induced in the eddy current ring 278 as it rotates relative to the permanent magnets 272, thereby urging the permanent magnets 272 (and magnet ring 204) to rotate at a second, slower speed. The magnet ring 204 is affixed to the output member 120, so it urges the output member 120 (and the fan blade device 180 mounted thereto) to rotate at the second, slower speed under the influence of the eddy current drive system 270 when the input member 110 and the output member 120 are not frictionally engaged.
In the embodiment illustrated in
Still referring to
Still referring to
In some implementations, the inwardly radial placement of the cooling fins 279 may at least partly shield the cooling fins from damage by external objects, or vice versa. For example, the described inwardly radial arrangement may protect the cooling fins 279 from being damaged by road debris, or other materials that may inadvertently come into contact with the clutch device 200. In another example, the described inwardly radial arrangement may substantially keep the cooling fins 279 away from encountering and damaging or injuring objects that may inadvertently come into contact with the clutch device 200 while it is rotating (e.g., loose wires, dangling hoses, a mechanic's fingers).
Referring now to
Referring to
Accordingly, the friction drive system 150 of the clutch device 300 may operate in the manner as described in connection with the previous embodiments. As shown in
The clutch device 300 depicted in
As previously described, when the output member 120 is not frictionally engaged to the input member 110 (via the friction ring 152), the output member 120 is not driven to rotate at the same speed as the input member 110. Due to this relative rotation between the input member 110 and the output member 120, the eddy current ring 378 is driven to rotate relative to the set of permanent magnets 372. In some implementations, eddy currents may be induced in the eddy current ring 378 as it rotates relative to the permanent magnets 372, thereby urging the eddy current ring 378 to rotate at a second, slower speed while the permanent magnets 372 rotate substantially at the drive speed of the drive pulley 190 (e.g., the rotational speed of the input member 110). The eddy current ring 378 is affixed to the output member 120, so that it urges the output member 120 (and the fan blade device 180 mounted thereto) to rotate at the second, slower speed under the influence of the eddy current drive system 370 when the input member 110 and the output member 120 are not frictionally engaged.
In the embodiment illustrated in
Still referring to
In the embodiment illustrated in
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of U.S. application Ser. No. 13/011,057 filed Jan. 21, 2011, which claims the priority benefit of U.S. Provisional Application for Patent, Ser. No. 61/1297,531 filed Jan. 22, 2010, the entire contents of each of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
768384 | Lockwood | Aug 1904 | A |
1371391 | Ollard | Mar 1921 | A |
2172311 | Thomas | Sep 1939 | A |
2259461 | Eason | Oct 1941 | A |
2357620 | Thomas | Sep 1944 | A |
2369328 | Watts | Feb 1945 | A |
2614396 | Ratermann | Oct 1952 | A |
2742179 | Livers | Apr 1956 | A |
3077252 | Treer | Feb 1963 | A |
3109555 | Samans | Nov 1963 | A |
3185250 | Glazier | May 1965 | A |
3202252 | Schilling | Aug 1965 | A |
3253687 | Young | May 1966 | A |
3312319 | Carroll et al. | Apr 1967 | A |
3396909 | Knapp | Aug 1968 | A |
3409305 | Nieland | Nov 1968 | A |
3517683 | Chandler | Jun 1970 | A |
3684397 | Elmer | Aug 1972 | A |
3762517 | Hanks | Oct 1973 | A |
4132301 | Zabonick | Jan 1979 | A |
4199048 | Ishikawa | Apr 1980 | A |
4226095 | Loken | Oct 1980 | A |
4231457 | Cornish | Nov 1980 | A |
4352365 | Boccardo et al. | Oct 1982 | A |
4355710 | Schilling | Oct 1982 | A |
4408685 | Schilling et al. | Oct 1983 | A |
4418807 | Raines | Dec 1983 | A |
4423803 | Malloy | Jan 1984 | A |
4425993 | Schilling | Jan 1984 | A |
4450947 | Hanks | May 1984 | A |
4456110 | Hanks et al. | Jun 1984 | A |
4460079 | Hanks | Jul 1984 | A |
4483430 | Carmichael et al. | Nov 1984 | A |
4541516 | Fenzel | Sep 1985 | A |
4570849 | Klaucke et al. | Feb 1986 | A |
4593801 | Takeuchi et al. | Jun 1986 | A |
4628953 | Correll et al. | Dec 1986 | A |
4657126 | Hanks et al. | Apr 1987 | A |
4750595 | Dayen et al. | Jun 1988 | A |
4766986 | Dayen et al. | Aug 1988 | A |
4770281 | Hanks | Sep 1988 | A |
4826064 | Dayen et al. | May 1989 | A |
4830161 | Hall et al. | May 1989 | A |
4846315 | Dayen | Jul 1989 | A |
4872535 | Dayen et al. | Oct 1989 | A |
4877117 | Kniebel et al. | Oct 1989 | A |
4909367 | Elmer | Mar 1990 | A |
4934500 | Hanks et al. | Jun 1990 | A |
5059161 | Bredt | Oct 1991 | A |
5215175 | Fenzel | Jun 1993 | A |
5242036 | Hennessy et al. | Sep 1993 | A |
5355983 | Radomski et al. | Oct 1994 | A |
5398794 | Walberg et al. | Mar 1995 | A |
5405254 | Hennessy et al. | Apr 1995 | A |
5427609 | Zoglman et al. | Jun 1995 | A |
5586635 | Nelson et al. | Dec 1996 | A |
5586636 | Linnig | Dec 1996 | A |
5611415 | Davis et al. | Mar 1997 | A |
5613586 | Schilling et al. | Mar 1997 | A |
5624016 | Coulter et al. | Apr 1997 | A |
5636719 | Davis et al. | Jun 1997 | A |
5665882 | Chung et al. | Sep 1997 | A |
5667045 | Cummings, III | Sep 1997 | A |
5704461 | Vatsaas et al. | Jan 1998 | A |
5752810 | Hein | May 1998 | A |
5765672 | Briggs et al. | Jun 1998 | A |
5877117 | Anderson et al. | Mar 1999 | A |
5878858 | Hein | Mar 1999 | A |
5896971 | Hein | Apr 1999 | A |
5897107 | Zierden et al. | Apr 1999 | A |
5913396 | Hein | Jun 1999 | A |
5984070 | Briggs et al. | Nov 1999 | A |
5994810 | Davis et al. | Nov 1999 | A |
6092638 | Vatsaas | Jul 2000 | A |
6109871 | Nelson et al. | Aug 2000 | A |
6135029 | Oberjohn | Oct 2000 | A |
6253716 | Palmer et al. | Jul 2001 | B1 |
6273221 | Schmidt | Aug 2001 | B1 |
6507790 | Radomski | Jan 2003 | B1 |
6548929 | Nelson et al. | Apr 2003 | B2 |
6600249 | Nelson et al. | Jul 2003 | B2 |
D478093 | Bentley | Aug 2003 | S |
6811011 | Bastien | Nov 2004 | B2 |
6838796 | Nelson | Jan 2005 | B1 |
6912353 | Nelson et al. | Jun 2005 | B2 |
7104382 | Swanson et al. | Sep 2006 | B2 |
7331437 | Wayman | Feb 2008 | B2 |
7438169 | Swanson et al. | Oct 2008 | B2 |
7604106 | Swanson et al. | Oct 2009 | B2 |
8100239 | Swanson et al. | Jan 2012 | B2 |
8109375 | Swanson et al. | Feb 2012 | B2 |
8360219 | Swanson | Jan 2013 | B2 |
8544627 | Lawrence et al. | Oct 2013 | B2 |
20020014804 | Nelson et al. | Feb 2002 | A1 |
20020021973 | Nelson | Feb 2002 | A1 |
20060131120 | Boffelli | Jun 2006 | A1 |
20060151278 | Settineri | Jul 2006 | A1 |
20070131514 | Sattineri | Jun 2007 | A1 |
20090014273 | Swanson et al. | Jan 2009 | A1 |
20090183963 | Swanson et al. | Jul 2009 | A1 |
20100038205 | Swanson et al. | Feb 2010 | A1 |
20100282562 | Swanson et al. | Nov 2010 | A1 |
20110180362 | Swanson | Jul 2011 | A1 |
20110278127 | Gebhart | Nov 2011 | A1 |
Entry |
---|
Kysor On/Off Fan Clutch Commercial, Kysor K30 On/Off Fan Clutch for Heavy-Duty Truck Applications, BorgWarner Thermal Systems, 2006, 2 pages. |
Shigley et al., Power Transmission Elements—A Mechanical Designer's Workbook, 1990, New York, McGraw-Hill, pp. 76, 91-95. |
Kit Masters, Remanufactured Fan Clutches—Borg-Warner/Kysor S, [Online], Retrieved from the Internet at http://www.kit-masters.com/content—4.php, 4 pages. |
Kit Masters, “2-Speed Conversion Kits” (2 pages). |
Kysor, “Specify the Kysor K-22RA Fan Drive” 1996 (2 pages). |
Kysor 2-Speed Kit Instructions (1 page). |
Concepts NREC, “Electromagnetic Fan Clutch” 2009 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20140299436 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61297531 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13011057 | Jan 2011 | US |
Child | 14310649 | US |