The invention relates generally to fan drive systems and more specifically to a fan penetration feature for in-vehicle testing.
In-vehicle testing of fans and fan drives is highly desirable to optimize the cooling performance of the fan on cooling system components, such as a radiator, balanced against other performance factors such a fuel economy and power usage.
In order to obtain optimal performance for an associated fan drive and clutch system, it is desirable to alter the fan penetration within the radiator shroud during in-vehicle testing. Fan penetration, for the purposes of the present invention, is defined as the distance between the fan blades and the radiator. The greater the fan penetration, the smaller the distance between the fan leading edge of the blades and the radiator, and the deeper the fan blades are positioned within a radiator shroud and away from the fan clutch assembly. As the fan is rotated at a fixed rotational speed during in-vehicle testing, fan penetration directly affects the cooling performance characteristics of the fan by changing its proximity to the radiator.
Typically, fan penetration alteration during in-vehicle testing cycles is accomplished utilizing shims placed between the fan clutch assembly and the fan to alter the relative distance between the fan and fan clutch assembly. In order to install, or alter, the location of the shims, it is currently necessary to first cool the engine from operating temperatures prior to allowing technicians to alter fan penetration. The engine must then be warmed back up to operating temperatures to conduct the test at the next fan penetration. This process in time consuming, typically taking up to two or three hours to complete each shim alteration.
Another undesirable feature associated with the use of shims to alter fan penetration is the limited amount of fan locations achievable. Typical shims allow fan position changes of about one-quarter of an inch. Thus, fan optimization can be compromised within these parameters.
It is thus highly desirable to provide a new method for performing fan penetration alterations for in-vehicle testing that address these problems.
The present invention provides a method for testing cooling performance characteristics of a fan drive system at various fan penetrations during in-vehicle cooling tests. This feature allows optimal fan penetration positioning within the cooling system to be accomplished in a fraction of the time typically associated with prior art systems that utilize shims to determine optimal fan penetration. Further, the present invention allows quick changeovers without the need to cool down the engine, thereby decreasing changeover time associated with the cooling and subsequent warm-up of the engine back to operating temperatures during these tests. Also, the present invention allows for an infinitely variable fan location relative to the fan clutch assembly, as compared with systems that utilize shims and have a limited amount of potential fan penetration settings, thereby resulting in potentially more efficient fan performance than through the use of shims.
The present invention provides a fan penetration fixture consisting of a threaded shaft and a locking fan hub design. The fixture is designed to take the place of the fan clutch on a fan drive assembly in the vehicle being tested. The threaded shaft portion of the fixture bolts to the fan hub. The desired fan is then bolted to the locking fan hub portion of the fixture. The lock nut can be positioned at any point along the threaded shaft to achieve a desired fan penetration. The vehicle is then turned on and warmed to operating temperature, wherein the cooling system is then tested for a one or more cooling system performance characteristics. To alter fan penetration, simply loosen the lock nut feature, reposition the fan along the threaded shaft, and retighten the lock nut feature to a new fan penetration, wherein the vehicle is turned on and new measurements taken. The changeover is quick and easy, and may be done without first substantially cooling the vehicle's engine.
The present invention itself, together with attendant advantages, will be best understood by reference to the following detailed description, taken in conjunction with the accompanying figures.
In the following figures the same reference numerals will be used to refer to the same components. In the following description, various operating parameters and components are described for one constructed embodiment. These specific parameters and components are included as examples and are not meant to be limiting.
Referring now to
The cooling system 20 also has a fan assembly 30 having a plurality of fan blades 32 and a hub portion 34. The hub portion 34 is preferably secured to the fan penetration fixture 22 using one or more socket head cap bolts 36 such that the fan blades 32 are positioned within a radiator shroud 38 of a radiator 40. The rotation of the engine crankshaft induces the rotation of drive belts 37, 39, which in turn rotates the hub assembly 26, fan penetration fixture 22, and hub portion 34. The rotation of the hub portion 34 then rotates fan blades 32 to cool the radiator 40.
The fan penetration fixture 22 also fixes the location of the fan blades 32 at a distance D1 relative to the radiator 40. The relative location of the fan blades 32 between the front portion 24, as defined by distance D1, is also known as fan penetration.
By varying the fan penetration, a determination of any desired cooling system performance characteristic of the fan assembly 30 to the radiator 40 can be measured for each possible fan penetration. These measurements may then be compared to determine the optimal fan penetration setting for the particular fan system 10 in a vehicle.
As best seen in
The threaded shaft portion 60 has a disc-shaped portion 66 preferably having one or more holes 68 used to secure the disc-shaped portion 66 to the front portion 24 using bolts 28. The bolts 28 are preferably Allen held bolts 28. In the embodiment shown in
The threaded shaft portion 60 also has a threaded shaft 70 extending outwardly from the disc-shaped portion 66. While the threading 71 of the threaded shaft 70 is shown in
The flanged shaft portion 64 has a disc-shaped body 80 surrounding an inner threaded portion 82 that corresponds to the threading on the threaded shaft 70. A series of holes 84 on the disc-shaped body 80 spaced circumferentially around the inner threaded portion 82 are used to secure the flanged shaft portion 64 to the fan hub portion 34 using bolts 36, preferably Allen head bolts 36. A second set of holes 87 are used to secure the flanged shaft portion 64 to the locking sleeve 62 as described further below. The number of holes 84 and bolts 36 that preferably secure the flanged shaft portion 64 to the hub portion 34 is shown as six in
The locking sleeve 62 has an outer disk 72 having an inner threaded portion 74 that corresponds to the threading on the threaded shaft 70. The locking sleeve 62 is thus twisted onto the threaded shaft 70. The outer disk 72 has a series of holes 76. A head bolt 78, preferably a 12-point flange screw, is then introduced through holes 76, 87 to secure the locking sleeve 62 to the flanged shaft portion 64 at a particular fan penetration. The tightening of the bolts 78 also locks down the locking sleeve 62 and flanged shaft portion 64 onto the threaded shaft 70, therein “locking” the fan penetration fixture 22, and the fan blades 32, at a desired fan penetration to conduct an in-vehicle test of the cooling performance characteristics. While
Referring now to
In Step 120, a fan penetration fixture 22 is coupled to the front portion 24 of the fan hub assembly 26. This is accomplished by first coupling the bolts 31 within the corresponding holes 68 of the disc-shaped portion 66 and within holes of the front portion 24 and torquing (tightening) the bolts 31 to about 45 foot-pounds to secure the threaded shaft portion 60 to the fan hub assembly. Next, the inner threaded portion 74 of the locking sleeve 62 is screwed onto the threaded shaft 70. The inner threaded portion 82 of the flanged shaft portion 64 is then screwed onto the threaded shaft such that the disc-shaped body 80 is closely coupled to the outer disk 72 of the locking sleeve 62.
In Step 130, the fan hub portion 34, including the fan blades 32, are secured to the flanged shaft portion 64 by installing bolts 36 through the holes 84 on the disc-shaped body 80 and torquing the bolts 36 to about 8 foot-pounds.
Next, in Step 140, the entire fan drive assembly 20, including the fan penetration fixture 22, is reinstalled back into the vehicle to be tested by retightening the bolts 28 used to secure the hub assembly 26 to the FEAD bracket 27.
In Step 150, the hub portion 34 (and coupled flanged shaft portion 64 and locking sleeve 62) is rotated along the threaded shaft 70 to set the fan blades 32 at a desired fan penetration. In Step 160, bolts 78 are introduced through holes 76, 87 and tightened to about 25 foot-pounds using a torque wrench to secure the flanged shaft portion 64 to the locking sleeve 62 and “lock” the fan blades 32 at the desired fan penetration.
In Step 170, the engine is turned on, and the engine temperature is raised to a desired operating temperature range. The fan drive system 20 is set to a desired fan rotational rate by adjusting engine rpm in order to measure one or more desired cooling system performance characteristics at the particular fan penetration. As one of ordinary skill in the fan drive system industry appreciates, a wide variety of cooling system performance characteristics may be measured at the particular fan penetration. For example, engine coolant temperature may be measured at the particular fan rotation rate. Alternatively, the air temperature may be measured at various points along the surface of the radiator 40.
In Step 180, the fan penetration is changed by loosening bolts 78 and rotating the hub portion 34 to a second desired fan penetration. The bolts 78 are then retightened to 25 foot-pounds as described above in Step 160. The desired cooling system performance characteristics are again measured for the second fan penetration as in Step 170. As one of ordinary skill appreciates, Steps 170 and 180 are repeated for each desired fan penetration.
In Step 190, the measured cooling system performance characteristics for each of the various fan penetrations as determined above in Step 170 are compiled and analyzed to determine an optimal fan penetration for the particular fan drive system 20.
In Step 200, the fan penetration fixture 22 is removed and the fan clutch replaced back onto the fan drive system 20. This acquired information also allows the fan clutch assembly to then be re-designed to incorporate the optimized fan penetration determined during testing.
The present invention provides a method for testing cooling system performance characteristics for a particular fan drive system during in-vehicle cooling tests in a virtually limitless number of possible fan penetrations. This feature allows fan penetration positioning to be accomplished accurately and quickly. Further, the present invention allows quick changeovers without the need to cool down the engine for technicians between vehicle tests to perform adjustments to the fan penetration, thereby decreasing changeover time associated with the cooling and subsequent warm-up of the engine back to operating temperatures.
While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1427687 | Johnson | Aug 1922 | A |
1489841 | MacDonald | Apr 1924 | A |
2454182 | Kampa | Nov 1948 | A |
4692053 | Sampedro | Sep 1987 | A |
5938405 | Coleman | Aug 1999 | A |
6113351 | McCallum et al. | Sep 2000 | A |
6527516 | Crevel | Mar 2003 | B1 |
6644922 | McCallum et al. | Nov 2003 | B1 |
6659724 | Takeuchi et al. | Dec 2003 | B1 |
6790006 | Robb | Sep 2004 | B1 |
6908284 | Adrian | Jun 2005 | B1 |
20050050985 | Crissy | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050067138 A1 | Mar 2005 | US |