The present invention relates to a fan self-cooling structure, and more particularly to a fan self-cooling structure with heat pipe for lowering the temperature of the electronic elements in a fan and enhancing the characteristics of the fan.
In recent years, with the development in the electronic industrial field, all kinds of electronic devices have quickly upgraded performance and largely increased computing speed. To enable constantly increased computing speed, the number of chips included in the chip set inside the electronic devices also increases. These chips would produce a large amount of heat when they work, and the produced heat must be timely removed from the chips to avoid any adverse influence on the performance of the electronic devices, such as reducing the computing speed of the electronic devices. Moreover, heat accumulated inside the electronic devices would cause burnout thereof. Therefore, it has become an important issue to efficiently dissipate the heat from the electronic devices.
Among various kinds of heat dissipating devices, the cooling fan is able to quickly remove the heat absorbed by the radiation fins to enable good air circulation and accordingly, has become a requisite part of most electronic devices.
Conventionally, the cooling fan mainly includes a rotor assembly, a stator assembly, and a fan circuit board. The rotor assembly is located to one side of the stator assembly, and the fan circuit board is located to the other side of the stator assembly opposite to the rotor assembly. The stator assembly includes a silicon steel seat and a plurality of insulating posts radially outward extended from the silicon steel seat. The insulating posts each are wounded by an enamel wire, which is electrically connected to the fan circuit board and electronic elements provided thereon. When the cooling fan is driven to rotate, the fan circuit board and the electronic elements thereon are electrically connected to one another to thereby drive the enamel wires wound around the insulating posts to generate magnetic polarities. The rotor assembly rotates under the effect of the magnetic polarities generated by the enamel wires. The electronic elements would produce heat and have higher temperature while driving the enamel wires to generate magnetic polarities. However, in the conventional cooling fan structure, there is not any means nearby the electronic elements for dissipating the heat produced by the electronic elements. Thus, the produced heat would accumulate on the fan circuit board and the electronic elements thereon to adversely affect the operation performance of the cooling fan, resulting in damaged electronic elements and shortened service life thereof.
In brief, the conventional cooling fan has the following disadvantages: (1) the fan circuit board and the electronic elements thereon are subject to poor heat dissipation; (2) the operation performance of the cooling fan is adversely affected; and (3) the electronic elements thereof are subject to damage and shortened service life.
It is therefore a primary object of the present invention to provide a fan self-cooling structure with heat pipe for lowering the temperature of electronic elements mounted on a fan circuit board.
Another object of the present invention is to provide a fan self-cooling structure with heat pipe for enhancing the characteristics of a fan.
To achieve the above and other objects, the fan self-cooling structure with heat pipe provided according to a preferred embodiment of the present invention includes a stator assembly, a fan circuit board, and at least one heat pipe. The fan circuit board is flatly connected to a bottom end of the stator assembly and has at least one heat-producing electronic element provided thereon. The at least one heat pipe is provided on the fan circuit board for absorbing and transferring heat energy produced by the at least one electronic element. With these arrangements, it is able to lower the temperature of the electronic elements in a fan and enhance the characteristics of the fan.
To achieve the above and other objects, the fan self-cooling structure with heat pipe provided according to another preferred embodiment of the present invention includes a stator assembly, a fan circuit board, a heat plate, and at least one heat pipe. The fan circuit board is flatly connected to a bottom end of the stator assembly and has at least one heat-producing electronic element provided thereon. The heat plate has a first side correspondingly contacting with the at least one heat-producing electronic element and an opposite second side contacting with the at least one heat pipe. Thus, the heat plate absorbs the heat energy produced by the electronic element and transfers the absorbed heat energy to the heat pipe. The heat energy transferred by the heat pipe is finally dissipated from the heat pipe into ambient air to thereby lower the temperature of the electronic elements in a fan and enhance the characteristics of the fan.
Therefore, the present invention has the following advantages: (1) lowering the temperature of the electronic elements in a fan; and (2) enhancing the characteristics of the fan.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
The present invention will now be described with some preferred embodiments thereof by referring to the accompanying drawings. For the purpose of easy to understand, elements that are the same in the preferred embodiments are denoted by the same reference numerals.
Please refer to
Please refer to
The stator assembly 1 is mounted on the base 42, such that the fan circuit board 2 connected to the bottom end of the stator assembly 1 is received in the first recess 421 of the base 42 with the heat pipes 3 correspondingly received in the second recesses 422.
In a variant of the first preferred embodiment as shown in
When the fan circuit board 2 and the heat-producing electronic elements 21 are electrically connected to one another, the coils 121 wound around the insulating posts 12 are caused to generate magnetic polarities. The heat energy produced by the electronic elements 21 during the operation thereof is absorbed and transferred by the heat-absorbing sections 31 of the heat pipes 3 to the heat-dissipating sections 32. The heat is then dissipated from the heat-dissipating sections 32 into ambient air to achieve the effects of lowering the temperature of the electronic elements 21 on the fan circuit board 2 and enhancing the fan characteristics. Further, when a fan (not shown) assembled to the stator assembly 1 is driven via the coils 121 to produce air flows, the air flows can also carry the heat away from the heat-dissipating sections 32 that are extended to the outer frame 41.
As can be seen from
The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6315529 | Hu | Nov 2001 | B1 |
7442005 | Yeh et al. | Oct 2008 | B2 |
7554227 | Horng et al. | Jun 2009 | B2 |
7563070 | Lin et al. | Jul 2009 | B2 |
7567000 | Sugiyama et al. | Jul 2009 | B2 |
8206104 | Horng et al. | Jun 2012 | B2 |
20050116554 | Dano et al. | Jun 2005 | A1 |
20070075598 | Tung et al. | Apr 2007 | A1 |
20070145842 | Zhu et al. | Jun 2007 | A1 |
20070252451 | Shibuya et al. | Nov 2007 | A1 |
20080053639 | Lin et al. | Mar 2008 | A1 |
20110108251 | Horng | May 2011 | A1 |
20120085519 | Chou | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120039732 A1 | Feb 2012 | US |