Further features of the invention are set forth in the following detailed description of the preferred embodiment of the invention and are shown in the following drawing figures.
The nozzle housing 16 has a discharge tube 20 with a cylindrical interior surface 22 that defines an upstream portion of a liquid discharge passage of the nozzle assembly. The nozzle housing discharge tube 20 could be an integral extension of the trigger sprayer liquid discharge passage 14, or could be assembled to the discharge passage. The tube interior surface 22 extends in a downstream direction through the nozzle housing 16 from an inlet opening 24 of the liquid discharge passage, to a liquid outlet opening 26 of the liquid discharge passage. The liquid outlet opening 26 is surrounded by a cylindrical cap wall 28 of the nozzle housing 16. The cap wall 28 has a cylindrical interior surface 30 and an opposite exterior surface 32. The cap wall interior surface 30 defines a downstream portion of the liquid discharge passage. An annular groove 34 is formed in the cap wall exterior surface 32. The annular groove 34 mounts the nozzle cap 18 to the nozzle housing 16 for free rotating movement of the nozzle cap 18 on the nozzle housing 16, as will be explained.
A post 36 is positioned in the liquid discharge passage defined by the nozzle housing discharge tube interior surface 22 and the cap wall interior surface 30. The post 36 has a cylindrical exterior surface that extends from a proximal end 38 of the post positioned upstream in the nozzle housing liquid discharge passage, to a distal end 40 of the post positioned just outside of the nozzle housing liquid discharge passage. The post distal end 40 has an exterior surface with a conical configuration that projects outwardly from the outlet opening 26 of the nozzle housing liquid discharge passage.
A plurality of grooves 42 are recessed into the exterior surface of the post 36. In the preferred embodiment, the plurality of post grooves 42 are four grooves that are circumferentially spaced around the circumference of the post, with each of the grooves 42 being spaced 90 degrees from adjacent grooves on the post circumference. The grooves 42 have upstream portions that extend parallel to each other and parallel to a center axis 44 of the post 36, and downstream portions that converge toward each other and toward the post center axis 44. The downstream portions of the grooves 42 extend to the tip of the post distal end 40.
The nozzle housing 16 is also constructed with a flange 45 that extends over a portion of the liquid discharge tube 22. The flange 45 is employed in attaching the nozzle housing 16 to the trigger sprayer 12 in a conventional manner, with the nozzle housing liquid discharge tube 20 communicating with the trigger sprayer discharge passage 14.
The nozzle cap 18 has a generally cylindrical exterior wall 46 that extends around an interior volume of the nozzle cap. The exterior wall 46 tapers slightly toward an end wall 48 of the nozzle cap at one end of the exterior wall 46. The opposite end of the exterior wall 46 is open. The nozzle housing cap wall 28 extends through the opening and into the interior volume of the nozzle cap 18.
The nozzle cap exterior wall 46 has an interior surface 50 that opposes the nozzle housing cap wall 28. An annular rim 52 projects inwardly from the interior surface 50. The rim 52 is dimensioned to be received in the annular groove 34 on the nozzle housing cap wall 28. The engagement of the rim 52 in the annular groove 34 mounts the nozzle cap 18 on the nozzle housing 16 for free rotation of the cap on the housing. The engagement of the rim 52 in the annular groove 34 also prevents the nozzle cap 18 from being moved axially relative to the nozzle housing 16.
A cylindrical inner sealing wall 54 projects inwardly from the cap end wall 48 into the nozzle cap interior volume. The inner wall 54 is dimensioned to engage in a sealing, sliding engagement with the interior surface of the nozzle housing cap wall 28.
A cylindrical, tubular wall 56 also projects inwardly from the nozzle cap end wall 48. The tubular wall 56 is positioned concentrically inside the inner sealing wall 54 of the nozzle cap. The tubular wall 56 has a cylindrical interior surface 58 that surrounds and engages in sealing engagement with the exterior surface of the nozzle housing post 36. A pair of axial grooves 60 are recessed into the tubular wall interior surface 58. The tubular wall grooves 60 are positioned on diametrically opposite sides of the tubular wall 56 and extend parallel to each other along the tubular wall. As shown in
The nozzle cap end wall 48 inside the tubular wall 56 has a conical configuration. The conical shape gives the end wall a conical interior surface 62 and a conical exterior surface 64. The conical interior surface 62 mates in sliding engagement with the conical distal end surface 40 of the nozzle housing post 36. The conical interior surface 62 converges to an outlet orifice 66 that passes through the center of the nozzle cap end wall 48. The outlet orifice 66 has an oblong, slot-shaped configuration. The opposite ends of the slot-shaped orifice 66 align with the pair of grooves 60 in the interior surface 58 of the nozzle cap tubular wall 56.
A cylindrical projection 68 projects outwardly from the center of the conical end wall exterior surface 64. The projection 68 has a slot 70 formed through its center. The slot 70 is aligned with the elongate slot configuration of the orifice 66 and the interior of the slot 70 communicates with the orifice 66. The opposing planar surfaces 72 on the opposite sides of the projection slot 70 further form the discharge of liquid from the slot orifice 66 into a flat, fan-shaped spray pattern.
With the relative positions of the four post grooves 42 on the exterior of the nozzle housing post 36, and the two tubular wall grooves 60 in the interior surface 58 of the nozzle cap tubular wall 56, it can be seen that the two tubular wall grooves 60 will align with a pair of the nozzle housing post grooves 48 when the nozzle cap 18 is rotated relative to the nozzle housing 16 so that the elongate slot orifice 60 is positioned vertically as shown in
When the nozzle cap 18 is rotated relative to the nozzle housing 16 to positions between the first, second, third, or fourth positions, the nozzle cap tubular wall grooves 60 are not aligned with the nozzle housing post grooves 42 and liquid discharge through the nozzle assembly 10 is prevented. An example of this situation is shown in
Thus, the nozzle assembly 10 of the present invention provides a nozzle assembly of simplified, two-piece construction, that is easily adjusted to discharge liquid in either a vertical fan spray pattern or a horizontal fan spray pattern, or is adjusted to an off position where the discharge of liquid through the nozzle assembly 10 is prevented.
Although the nozzle assembly of the invention has been described above with reference to a specific embodiment of the invention, it should be understood that modifications and variations could be made to the embodiment described without departing from the intended scope of the application claims.