This application claims priority to Taiwan Application Serial Number 110104415, filed Feb. 5, 2021, which is herein incorporated by reference in its entirety.
The present disclosure relates to a fan system and a fan driving method, especially for controlling multiple fans to maintain the same rotating speed.
With the development of technology, the operating frequency of various electronic devices has increased, but the increase in operating frequency increases the internal temperature of the electronic device during operation. In order to prevent high temperature from affecting the operation of electronic devices and even damage to electronic devices, “fans” have become an indispensable accessory for electronic devices to maintain operation.
Generally speaking, the fan system includes multiple fans, and the fans are controlled at the same rotating speed. However, during actual operation of the fans, rotating speed often fluctuates due to various variables or different operating requirements, and the rotating speed may also be adjusted according to power supply requirements.
One aspect of the present disclosure is a fan driving method, comprising the following steps: driving a first fan according to a first drivingsignal, and driving a second fan according to a second driving signal; obtaining a first rotating speed signal from the first fan, and obtaining a second rotating speed signal from the second fan, wherein the first rotating speed signal has a first phase, and the second rotating speed signal has a second phase; comparing a difference between the second phase and the first phase to obtain a detection phase difference when determining that the first phase is unstable; and selectively increasing or decreasing a duty cycle of the second driving signal according to the detection phase difference to adjust the second phase to maintain a preset phase difference with the first phase.
Another aspect of the present disclosure is a fan system, comprising a first fan and a second fan. The first fan is configured to operate according to a first driving signal to generate a first rotating speed signal. The first rotating speed signal has a first phase. The second fan is electrically coupled to the first fan, and configured to operate according to a second driving signal to generate a second rotating speed signal. The second rotating speed signal has a second phase, the second fan is configured to receive the first rotating speed signal, so as to obtain a detection phase difference between the first phase and the second phase. The second fan is further configured to selectively increase or decrease a duty cycle of the second driving signal according to the detection phase difference, and the second phase is adjusted to maintain a preset phase difference with the first phase.
Another aspect of the present disclosure is a fan driving method, comprising the following steps: driving a first fan according to a first drivingsignal, and driving a second fan according to a second driving signal; obtaining a first rotating speed signal from the first fan, and obtaining a second rotating speed signal from the second fan, wherein the first rotating speed signal has a first frequency, and the second rotating speed signal has a second frequency; comparing a difference between the second frequency and the first frequency to obtain a detection frequency difference when determining that the first frequency is unstable; and increasing or decreasing a duty cycle of the second driving signal selectively to change the second frequency toward the first frequency according to the detection frequency difference.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
For the embodiment below is described in detail with the accompanying drawings, embodiments are not provided to limit the scope of the present disclosure. Moreover, the operation of the described structure is not for limiting the order of implementation. Any device with equivalent functions that is produced from a structure formed by a recombination of elements is all covered by the scope of the present disclosure. Drawings are for the purpose of illustration only, and not plotted in accordance with the original size.
It will be understood that when an element is referred to as being “connected to” or “coupled to”, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element to another element is referred to as being “directly connected” or “directly coupled,” there are no intervening elements present. As used herein, the term “and/or” includes an associated listed items or any and all combinations of more.
As shown in
In some embodiments, the first/second second driving signals are in the form of the Pulse Width Modulation (PWM), and adjusts the operating time of the motors 112/122 by changing the duty cycle of the power, and the rotating speed of the fan will be changed. For example, when the duty cycle of the first/second second driving signals are 60%, it means that the rotating speed of the fan is 60% of the maximum rotating speed.
The rotating speed signals Vd1/Vd2 are configured to represent the current rotating speed of the fans 110/120. In one embodiment, the sensors 113/123 of the first fan 110 and the second fan 120 are configured to detect the fan blade 114/124 or the position of the rotor in the motors 112/122, so as to generate rotating speed signals. The waveform of the rotating speed signals is a square wave (as shown in
In the embodiment, the second fan 120 adjust the own rotating speed according to the rotating speed of the first fan 110, so that the rotating speed of the second fan 120 may be consistent with the rotating speed of the first fan 110, but the phase of the second rotating speed signal Vd2 must be staggered with the first rotating speed signal Vd1 (e.g., 90 degrees) to avoid unstable supply current.
Specifically, the second fan 120 is electrically coupled the first fan 110, so as to receive the first rotating speed signal Vd1 recorded by the first sensor 113. After the second controller 121 of the second fan 120 receives the first rotating speed signal Vd1, the second controller 121 compares a difference between the first phase of the first rotating speed signal Vd1 and the second phase of the second rotating speed signal Vd2, so as to obtain a detection phase difference.
For example, if the first phase of the first rotating speed signal Vd1 is behind the preset second phase of the second rotating speed signal Vd2 by 20 degrees, the second controller 121 of the second fan 120 increases the duty cycle of the second driving signal. At this time, the second phase of the second rotating speed signal Vd2 moves forward, so that phase difference between the second phase and the first phase will increase to match a preset phase difference (i.e., the phase difference changes from 20 degrees to 90 degrees).
On the other hand, if the first phase of the first rotating speed signal Vd1 leads the second phase of the second rotating speed signal Vd2 by 20 degrees, the second controller 121 of the second fan 120 decreases the duty cycle of the second driving signal. At this time, the second phase of the second rotating speed signal Vd2 moves back, so that phase difference between the second phase and the first phase will increase to match a preset phase difference. In other words, the second fan 120 selectively increase or decrease a duty cycle of the second driving signal according to the detection phase difference, so that the second phase may be adjusted to maintain the preset phase difference (e.g., 90 degrees) from the first phase.
In some embodiments, in addition to the first fan 110 and the second fan 120, the fan system 100 further includes multiple fans such as a third fan and a fourth fan. As in the above control method of the second fan 120, the other fans may electrically coupled to the first fan 110 to receive the first rotating speed signal, and control the rotating speed for the first fan 110 according to the first rotating speed signal and the detection phase difference, but the phase of the rotating speed signals are staggered (e.g., the phase of the first fan leads the phase of the second fan by 45 degrees, and the phase of the first fan leads the phase of the third fan by 90 degrees). Accordingly, it can avoid the unstable power supply caused by the excessive instant current due to the same phase of multiple fans.
In some embodiments, in order to maintain the same rotating speed for all fans, the fan system 100 can adjust the phase of the rotating speed signal in different ways according to different conditions.
The some other embodiments, the second fan 120 determines whether the frequency of the first rotating speed signal Vd1 is stable. If the frequency of the first rotating speed signal Vd1 keeps changing during a period of time, it means that the rotating speed of the first fan 110 not stable yet (such as accelerating or decelerating). When the frequency of the first rotating speed signal is unstable, the second fan 120 first adjusts the duty cycle of the second driving signal through the above method, so that the rotating speed of the second fan 120 is close to the rotating speed of the first fan 110.
Overall, the second fan 120 compares a difference between the first frequency of the first rotating speed signal Vd1 and the second frequency of the second rotating speed signal to obtain a detection frequency difference (or the difference in period length). Then, through the detection frequency difference (e.g., the second frequency is lower than the first frequency), the second fan 120 selectively increases or decreases the duty cycle of the second driving signal, so that the second frequency changes toward the first frequency, and the first fan 110 and the second fan 120 have the same rotating speed.
As shown in
On the other hand, if the phase difference is much less than or equal to the preset phase difference, the second fan 120 adjusts the phase of the second rotating speed signal Vd2 (the phase of the second driving signal), so that the first phase and the second phase are maintained at a preset interval of the phase difference. In some embodiments, the second fan 120 will temporarily adjust the duty cycle of the second driving signal, so that the phase of the second driving signal and the second rotating speed signal are changed (e.g., moving forward or moving backward). The first rotating speed signal and the second rotating speed signal are maintained at the phase difference.
Specifically, if the detection phase difference detected by the second fan 120 is “+20 degrees”, it means that the second phase of the second rotating speed signal Vd2 leads the first phase of the first rotating speed signal Vd1 by 20 degrees. At this time, in order to adjust the second phase of the second rotating speed signal Vd2 without changing the average rotating speed of the second fan 120, the second fan 120 first adjusts the duty cycle of the second driving signal briefly, and then restores the original the duty cycle. For example, as shown in
In addition, after the first period P1, the second fan 120 will determine whether the detection phase difference between the first phase and the second phase matches the preset phase difference again, or will determine whether the detection phase difference and the preset phase difference are within a set range (such as 5%, 3% or 2%). The second fan 120 may respectively detect the signal period length of the first rotating speed signal Vd1 and the second rotating speed signal Vd2 to perform the above determination.
In some other embodiments, the second controller 121 of the second fan 120 can record multiple signal phases of the first rotating speed signal Vd1 at every starting time point of each period of the second rotating speed signal Vd2, and compare the multiple signal phases recorded each time, so as to determine whether “the first rotating speed signal Vd1 is stable” or “the detection phase difference between the first rotating speed signal Vd1 and the second rotating speed signal Vd2”. For example, as shown in
On the other hand, after the second driving signal is adjusted by the second fan 120, when each of the starting time points of the four periods P1-P4 of the second rotating speed signal Vd2, if the multiple signal phases of the recorded the first rotating speed signal Vd1 is “320 degrees, 240 degrees, 180 degrees, 140 degrees”, it means that the second phase is gradually increasing. If the preset phase difference is “90 degrees”, when one starting time point of one period of the second rotating speed signal Vd2, and the signal phase of the first rotating speed signal Vd1 is “90 degrees”, it means that the signal adjustment has been completed.
As shown in
As mentioned above, specifically, when an adjustment time T1 of the first period, the second fan 120 increases the duty cycle of the second driving signal from the first ratio (i.e., duty1, such as 60%) to the second ratio (i.e., duty2, such as 80%) according to the detection phase difference. When a recovery time T2 of the first period, the second fan 120 restores the duty cycle of the second driving signal from the second ratio (i.e., duty2, such as 80%) to the first ratio (i.e., duty1, such as 60%). In other words, the second fan 120 will instantly change the duty cycle of the second driving signal in one period, and then restore the original duty cycle, so as to adjust the second phase. The length of the adjustment time T1 (i.e., the proportion of the first period) can be changed according to the detection phase difference. For example, the greater the detection phase difference, the longer the adjustment time T1.
the some other embodiments, the second fan 120 gradually changes the duty cycle. That is, the duty cycle of the second driving signal changes linearly from the first ratio (60%) to the second ratio (80%), and then restores to the first ratio.
In some embodiments, the second fan 120 determines whether the detection phase difference (i.e., the actual difference between the second phase and the first phase) and the preset phase difference (i.e., the ideal difference between the second phase and the first phase) are within a set range (e.g., 5%, 3% or 2%). If so, it means that the detection phase difference is very close to the preset phase difference, and the second fan 120 uses the method shown in
In step S303, if the frequency (or period length) of the first rotating speed signal Vd1 is unstable, the second controller 121 further compares the first frequency of the first rotating speed signal Vd1 with the second frequency of the second rotating speed signal Vd2 to obtain the detection frequency difference. In step S304, the second controller 121 adjusts the duty cycle of the second driving signal according to the detection frequency difference. For example, if the detection frequency difference represents “the first frequency is greater than the second frequency 200 Hz”, the second controller 121 will increase the duty cycle of the second driving signal, so that the second frequency will increase accordingly.
In step S305, if the frequency (or period length) of the first rotating speed signal Vd1 maintains stable, the second controller 121 compares the difference between the first phase and the second phase to obtain the detection phase difference. In step S306, the second controller 121 further determines whether the detection phase difference and the preset phase difference are within a set range (e.g., 90 degrees).
In step S307, if the detection phase difference and the preset phase difference are not within the set range, then during the first period, the second controller 121 will increase or decrease the duty cycle of the second driving signal from the first ratio to the second ratio according to the detection phase difference. Then, when entering the second period, the second control 121 restores the duty cycle of the second driving signal to the first ratio.
In step S308, if the detection phase difference and the preset phase difference are within the set range, during the adjustment time T1 of the first period, the second control 121 increases or decreases the duty cycle of the second driving signal from the first ratio to the second ratio according to the detection phase difference. Then, the second control 121 restores the duty cycle of the second driving signal to the first ratio during the recovery time T2 of the first period.
The above steps S301-S308 can be executed repeatedly or cyclically. In other words, during the operation of the fan system 100, the second controller 121 may repeatedly perform the judgment operation of steps S302 and S306 according to the current rotating speed of the first fan 110 and the second fan 120, so as to make corresponding adjustments.
Accordingly, through the above fan driving method, the second driving signal can be adjusted according to different situations, so that the rotating speed of the second fan 120 can be kept consistent with the first fan 110. In addition, the phase of the second fan 120 and the first fan 110 are kept at the preset phase difference to avoid overlapping of the phases of the current signals of multiple fans, so as to avoid the unstable current.
The elements, method steps, or technical features in the foregoing embodiments may be combined with each other, and are not limited to the order of the specification description or the order of the drawings in the present disclosure.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the present disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this present disclosure provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
110104415 | Feb 2021 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6257832 | Lyszkowski et al. | Jul 2001 | B1 |
20040027105 | Nakamura et al. | Feb 2004 | A1 |
20180373300 | Bhatia | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1574594 | Feb 2005 | CN |
1282298 | Oct 2006 | CN |
101408186 | Aug 2011 | CN |
102748312 | Oct 2012 | CN |
I365595 | Jun 2012 | TW |
201243162 | Nov 2012 | TW |
201437489 | Oct 2014 | TW |
I563178 | Dec 2016 | TW |
Number | Date | Country | |
---|---|---|---|
20220252078 A1 | Aug 2022 | US |