The present disclosure relates generally to air handling systems, such as heating, ventilation, and/or air conditioning (HVAC) systems, and specifically relates to an inline centrifugal mixed flow fan system.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Conventional centrifugal fans are generally used to intake air parallel to a central longitudinal axis of the fan, and to accelerate the air radially outward from the central longitudinal axis. As such, conventional centrifugal fans often include a scroll-type housing to direct the radial air flow into a specific direction that is generally transverse to the central longitudinal axis. In contrast, conventional axial fans are generally used to intake air parallel to a central longitudinal axis of the fan, and to accelerate the air axially along the central longitudinal axis. As such, conventional axial fans often include a box-type housing having a relatively constant cross-sectional area along the central longitudinal axis. In general, each of these types of fans include certain advantages as well as certain drawbacks. Accordingly, it has been recognized that combining certain features of centrifugal and axial fans may prove beneficial.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
In certain embodiments, an inline centrifugal mixed flow fan system includes a wheel assembly disposed within an outer housing and comprising a hub cone, a plurality of fan blades directly coupled to and extending radially outward from the hub cone, and a shroud directly coupled to and at least partially radially surrounding the plurality of fan blades. The wheel assembly is configured to receive an air flow at an inlet axial end of the outer housing axially upstream of the wheel assembly, and to redirect the air flow axially downstream relative to a central longitudinal axis, circumferentially about the central longitudinal axis, and radially outward from the central longitudinal axis. A ratio of an axial length of the hub cone relative to an outer diameter of the hub cone is within a range of approximately 0.31 to approximately 0.44.
In other embodiments, an inline centrifugal mixed flow fan system includes a wheel assembly disposed within an outer housing and comprising a hub cone, a plurality of fan blades directly coupled to and extending radially outward from the hub cone, and a shroud directly coupled to and at least partially radially surrounding the plurality of fan blades. The wheel assembly is configured to receive an air flow at an inlet axial end of the outer housing axially upstream of the wheel assembly, and to redirect the air flow axially downstream relative to a central longitudinal axis, circumferentially about the central longitudinal axis, and radially outward from the central longitudinal axis. A ratio of an axial length of the shroud relative to an outer diameter of the shroud is within a range of approximately 0.16 to approximately 0.30.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
As used herein, the terms “approximately”, “generally”, and “substantially”, and so forth, are intended to mean that the property value being described may be within a relatively small range of the property value, as those of ordinary skill would understand. For example, when a property value is described as being “approximately” equal to (or, for example, “substantially similar” to) a given value, this is intended to mean that the property value may be within +/−5%, within +/−4%, within +/−3%, within +/−1%, within +/−1%, or even closer, the given value. Similarly, when a given feature is described as being “substantially parallel” to another feature, “generally perpendicular” to another feature, and so forth, this is intended to mean that the given feature is within +/−5%, within +/−4%, within +/−3%, within +/−1%, within +/−1%, or even closer, to having the described nature, such as being parallel to another feature, being perpendicular to another feature, and so forth. Mathematical terms, such as parallel and perpendicular, should not be rigidly interpreted in a mathematical sense, but as one of ordinary skill in the art would interpret such terms. For example, one of ordinary skill in the art would understand that two lines that are substantially parallel to each other are parallel to a substantial degree, with only minor deviation from parallel.
The present disclosure is directed to an inline centrifugal mixed flow fan system that utilizes a highly efficient mixed flow fan wheel assembly suitable for supply, exhaust, and/or return air applications. The relatively compact and lightweight design of the inline centrifugal mixed flow fan system described herein combines the relatively higher volume advantage of axial fan systems with the relatively lower sound and relatively higher efficiency of centrifugal fan systems. Through this versatility, the inline centrifugal mixed flow fan system described herein surpasses the efficiency of conventional centrifugal fan systems and axial fan systems.
Turning now to the drawings,
As illustrated in
In addition, in certain embodiments, the fan system 10 may include a belt tunnel 26 within which a drive belt may be disposed, wherein the drive belt is physically coupled to an output shaft of the motor and a drive shaft disposed within the outer housing 12 of the fan system 10 such that the drive belt facilitates the motor driving rotation of the drive shaft and, in turn, the fan wheel assembly 24. As illustrated in
As also illustrated in
As illustrated in
As such, as described above, the inline centrifugal mixed flow fan system 10 described herein generally combines features of centrifugal fan systems and axial fan systems to generate air flows 52 that share features with air flows generated by both centrifugal fan systems and axial fan systems. For example, centrifugal fan systems are generally used to intake air parallel to a central longitudinal axis of the fan, and to accelerate the air radially outward from, for example, generally transverse to, the central longitudinal axis. In contrast, axial fan systems are used to intake air parallel to a central longitudinal axis of the fan, and to accelerate the air axially along the central longitudinal axis. The inline centrifugal mixed flow fan system 10 described herein combines certain features of both centrifugal fan systems and axial fan systems by accelerating the air flow 52 radially, axially, and circumferentially, for example, with respect to the central longitudinal axis 54, using the fan wheel assembly 24 described herein, and then straightening the air flow 52 downstream of the fan wheel assembly 24 using the plurality of guide vanes 56. As such, the wheel assembly 24 and the plurality of guide vanes 56 function together to provide centrifugal air flow that includes radial, axial, and circumferential components that constitute a mixed flow that is “straightened” to exit the fan system 10 generally axially, hence, the designation of the fan system 10 as an inline centrifugal mixed flow fan system.
By combining aspects of both centrifugal fan systems and axial fan systems, the inline centrifugal mixed flow fan system 10 described herein produces certain benefits of both centrifugal fan systems and axial fan systems, such as exceptionally efficient air movement, higher static pressures, relatively low ambient noise, and a relatively steep fan curve. For example, as described in greater detail herein, the fan wheel assembly 24 of the inline centrifugal mixed flow fan system 10 is specifically designed to help produce these benefits. In addition, the plurality of guide vanes 56 of the inline centrifugal mixed flow fan system 10 creates even higher static pressures and, thus, saving energy as compared to other fan systems. In particular, it is noted that the relative dimensions and spatial relationships of the inline centrifugal mixed flow fan system 10 described herein have been specifically designed to increase the efficiency of the air movement, at relatively higher static pressures, creating relatively lower ambient noise, and so forth.
As illustrated in
In certain embodiments, a ratio of an axial length LBT of the bearing tunnel 32 relative to an axial length LOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.52 to approximately 0.67, may be within a range of approximately 0.54 to approximately 0.65, may be within a range of approximately 0.56 to approximately 0.63, or may be within a range of approximately 0.58 to approximately 0.61. Conversely, in certain embodiments, a ratio of the axial length LOH of the outer housing 12 relative to the axial length LBT of the bearing tunnel 32 may be within a range of approximately 1.50 to approximately 1.95, may be within a range of approximately 1.55 to approximately 1.85, may be within a range of approximately 1.60 to approximately 1.75, or may be within a range of approximately 1.66 to approximately 1.70.
In certain embodiments, a ratio of an outer diameter ODBT of the bearing tunnel 32 relative to the axial length LOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.36 to approximately 0.51, may be within a range of approximately 0.38 to approximately 0.49, may be within a range of approximately 0.40 to approximately 0.47, or may be within a range of approximately 0.42 to approximately 0.45. Conversely, in certain embodiments, a ratio of the axial length LOH of the outer housing 12 relative to the outer diameter ODBT of the bearing tunnel 32 may be within a range of approximately 1.95 to approximately 2.75, may be within a range of approximately 2.05 to approximately 2.60, may be within a range of approximately 2.15 to approximately 2.45, or may be within a range of approximately 2.25 to approximately 2.35.
In certain embodiments, a ratio of the axial length LBT of the bearing tunnel 32 relative to an outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.80 to approximately 1.00, may be within a range of approximately 0.83 to approximately 0.98, may be within a range of approximately 0.86 to approximately 0.95, or may be within a range of approximately 0.89 to approximately 0.92. Conversely, in certain embodiments, a ratio of the outer diameter ODOH of the outer housing 12 relative to the axial length LBT of the bearing tunnel 32 may be within a range of approximately 1.00 to approximately 1.25, may be within a range of approximately 1.03 to approximately 1.20, may be within a range of approximately 1.06 to approximately 1.15, or may be within a range of approximately 1.08 to approximately 1.12.
In certain embodiments, a ratio of the outer diameter ODBT of the bearing tunnel 32 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.57 to approximately 0.72, may be within a range of approximately 0.59 to approximately 0.70, may be within a range of approximately 0.61 to approximately 0.68, or may be within a range of approximately 0.63 to approximately 0.66. Conversely, in certain embodiments, a ratio of the outer diameter ODOH of the outer housing 12 relative to the outer diameter ODBT of the bearing tunnel 32 may be within a range of approximately 1.35 to approximately 1.75, may be within a range of approximately 1.40 to approximately 1.70, may be within a range of approximately 1.45 to approximately 1.65, or may be within a range of approximately 1.50 to approximately 1.60.
It should be noted that all of the angles described herein that are defined as being angles between two lines are intended to be the smaller of the two angles that are formed by the intersection of the two lines in a particular plane of reference, for example, usually the plane illustrated in the particular figure. In other words, unless the two lines are perpendicular to each other, the two lines will, by definition, form two angles—one acute angle and one obtuse angle—between each other in the particular plane of reference. However, again, when defined herein as being an angle between two lines, the angle is intended to be the smaller (acute) of the two angles in the particular plane of reference.
As also illustrated in
In certain embodiments, the radii of curvature of the hub cone segments 74 of the hub cone 46 may vary from a first hub cone segment 74A at the inlet end 66 of the hub cone 46 to a last hub cone segment 74F at the discharge end 68 of the hub cone 46. For example, in certain embodiments, the radii of curvature from the first hub cone segment 74A at the inlet end 66 of the hub cone 46 to the last hub cone segment 74F at the discharge end 68 of the hub cone 46 may gradually increase from the first hub cone segment 74A to a maximum radius of curvature, for example, of an intermediate hub cone segment, such as a third hub cone segment 74C or a fourth hub cone segment 74D, and then gradually decrease to the last hub cone segment 74F.
In certain embodiments, the hub cone 46 may be relatively narrow. For example, in certain embodiments, a ratio of the axial length Luc of the hub cone 46 relative to an inner diameter IDHC of the hub cone 46 may be within a range of approximately 1.41 to approximately 2.00, may be within a range of approximately 1.50 to approximately 1.90, may be within a range of approximately 1.59 to approximately 1.80, or may be within a range of approximately 1.68 to approximately 1.71. In addition, in certain embodiments, a ratio of the axial length Luc of the hub cone 46 relative to an outer diameter ODHC of the hub cone 46 may be within a range of approximately 0.31 to approximately 0.44, may be within a range of approximately 0.33 to approximately 0.42, may be within a range of approximately 0.35 to approximately 0.40, or may be within a range of approximately 0.37 to approximately 0.38. It is noted that, in certain embodiments, the outer diameter ODHC of the hub cone 46 may be substantially similar to the outer diameter ODBT of the bearing tunnel 32 of the fan system 10 such that the hub cone 46 and the bearing tunnel 32 are generally flush with each other at the axial position where the hub cone 46 and the bearing tunnel 32 are adjacent each other.
In addition, in certain embodiments, the hub cone 46 may also be relatively narrow with respect to the shroud 50 of the wheel assembly 24. For example, in certain embodiments, a ratio of the axial length LHC of the hub cone 46 relative to an inner diameter IDs of the shroud 50 may be within a range of approximately 0.27 to approximately 0.37, may be within a range of approximately 0.28 to approximately 0.36, may be within a range of approximately 0.29 to approximately 0.35, may be within a range of approximately 0.30 to approximately 0.34, or may be within a range of approximately 0.31 to approximately 0.33. In addition, in certain embodiments, a ratio of the axial length LHC of the hub cone 46 relative to an outer diameter ODS of the shroud 50 may be within a range of approximately 0.21 to approximately 0.30, may be within a range of approximately 0.22 to approximately 0.29, may be within a range of approximately 0.23 to approximately 0.28, may be within a range of approximately 0.24 to approximately 0.27, or may be within a range of approximately 0.25 to approximately 0.26.
In addition, in certain embodiments, a ratio of the axial length LHC of the hub cone 46 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.20 to approximately 0.28, may be within a range of approximately 0.21 to approximately 0.27, may be within a range of approximately 0.22 to approximately 0.26, or may be within a range of approximately 0.23 to approximately 0.25. In addition, in certain embodiments, a ratio of the axial length LHC of the hub cone 46 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.13 to approximately 0.19, may be within a range of approximately 0.14 to approximately 0.18, or may be within a range of approximately 0.15 to approximately 0.17.
In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the axial length LHC of the hub cone 46 may be within a range of approximately 0.49 to approximately 0.72, may be within a range of approximately 0.52 to approximately 0.68, may be within a range of approximately 0.55 to approximately 0.64, or may be within a range of approximately 0.58 to approximately 0.60. In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the outer diameter ODHC of the hub cone 46 may be within a range of approximately 0.18 to approximately 0.26, may be within a range of approximately 0.19 to approximately 0.25, may be within a range of approximately 0.20 to approximately 0.24, or may be within a range of approximately 0.21 to approximately 0.23.
In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the inner diameter IDs of the shroud 50 may be within a range of approximately 0.16 to approximately 0.22, may be within a range of approximately 0.17 to approximately 0.21, or may be within a range of approximately 0.18 to approximately 0.20. In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the outer diameter ODS of the shroud 50 may be within a range of approximately 0.12 to approximately 0.18, may be within a range of approximately 0.13 to approximately 0.17, or may be within a range of approximately 0.14 to approximately 0.16.
In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.11 to approximately 0.17, may be within a range of approximately 0.12 to approximately 0.16, or may be within a range of approximately 0.13 to approximately 0.15. In addition, in certain embodiments, a ratio of the inner diameter IDHC of the hub cone 46 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.06 to approximately 0.13, may be within a range of approximately 0.07 to approximately 0.12, or may be within a range of approximately 0.08 to approximately 0.11.
In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the axial length LHC of the hub cone 46 may be within a range of approximately 2.25 to approximately 3.25, may be within a range of approximately 2.35 to approximately 3.00, may be within a range of approximately 2.45 to approximately 2.90, or may be within a range of approximately 2.60 to approximately 2.70. In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the inner diameter IDHC of the hub cone 46 may be within a range of approximately 3.90 to approximately 5.20, may be within a range of approximately 4.05 to approximately 5.05, may be within a range of approximately 4.20 to approximately 4.90, or may be within a range of approximately 4.35 to approximately 4.75.
In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the inner diameter IDs of the shroud 50 may be within a range of approximately 0.72 to approximately 1.00, may be within a range of approximately 0.77 to approximately 0.95, or may be within a range of approximately 0.80 to approximately 0.90. In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the outer diameter ODS of the shroud 50 may be within a range of approximately 0.60 to approximately 0.76, may be within a range of approximately 0.62 to approximately 0.74, may be within a range of approximately 0.64 to approximately 0.72, or may be within a range of approximately 0.66 to approximately 0.70.
In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.57 to approximately 0.72, may be within a range of approximately 0.59 to approximately 0.70, may be within a range of approximately 0.61 to approximately 0.68, or may be within a range of approximately 0.63 to approximately 0.66. In addition, in certain embodiments, a ratio of the outer diameter ODHC of the hub cone 46 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.36 to approximately 0.51, may be within a range of approximately 0.38 to approximately 0.49, may be within a range of approximately 0.40 to approximately 0.47, or may be within a range of approximately 0.42 to approximately 0.45.
In addition, as illustrated in
In certain embodiments, an angle αS relative to a line 84 perpendicular to the central longitudinal axis 54 of the walls 82 of the shroud 50 may be within a range of approximately 60 degrees to approximately 68 degrees, may be within a range of approximately 61 degrees to approximately 67 degrees, may be within a range of approximately 62 degrees to approximately 66 degrees, or may be within a range of approximately 63 degrees to approximately 65 degrees.
In certain embodiments, similar to the hub cone 46, the shroud 50 may be relatively narrow. For example, in certain embodiments, a ratio of the axial length LS of the shroud 50 relative to the inner diameter IDS of the shroud 50 may be within a range of approximately 0.22 to approximately 0.35, may be within a range of approximately 0.24 to approximately 0.33, may be within a range of approximately 0.26 to approximately 0.31, or may be within a range of approximately 0.28 to approximately 0.29. In addition, in certain embodiments, a ratio of the axial length LS of the shroud 50 relative to the outer diameter ODS of the shroud 50 may be within a range of approximately 0.16 to approximately 0.30, may be within a range of approximately 0.18 to approximately 0.28, may be within a range of approximately 0.20 to approximately 0.26, or may be within a range of approximately 0.22 to approximately 0.24.
In addition, in certain embodiments, a ratio of the axial length LS of the shroud 50 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.17 to approximately 0.26, may be within a range of approximately 0.18 to approximately 0.25, may be within a range of approximately 0.19 to approximately 0.24, or may be within a range of approximately 0.20 to approximately 0.23. In addition, in certain embodiments, a ratio of the axial length LS of the shroud 50 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.11 to approximately 0.18, may be within a range of approximately 0.12 to approximately 0.17, or may be within a range of approximately 0.13 to approximately 0.16.
In addition, in certain embodiments, a ratio of the inner diameter IDS of the shroud 50 relative to the axial length LS of the shroud 50 may be within a range of approximately 2.80 to approximately 4.50, may be within a range of approximately 3.00 to approximately 4.20, may be within a range of approximately 3.20 to approximately 3.90, or may be within a range of approximately 3.40 to approximately 3.60. In addition, in certain embodiments, a ratio of the inner diameter IDS of the shroud 50 relative to the outer diameter ODS of the shroud 50 may be within a range of approximately 0.75 to approximately 0.85, may be within a range of approximately 0.76 to approximately 0.84, may be within a range of approximately 0.77 to approximately 0.83, may be within a range of approximately 0.78 to approximately 0.82, or may be within a range of approximately 0.79 to approximately 0.81.
In addition, in certain embodiments, a ratio of the inner diameter IDS of the shroud 50 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.67 to approximately 0.82, may be within a range of approximately 0.70 to approximately 0.79, or may be within a range of approximately 0.73 to approximately 0.76. In addition, in certain embodiments, a ratio of the inner diameter IDS of the shroud 50 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.45 to approximately 0.56, may be within a range of approximately 0.47 to approximately 0.54, or may be within a range of approximately 0.49 to approximately 0.52.
In addition, in certain embodiments, a ratio of the outer diameter ODS of the shroud 50 relative to the axial length LS of the shroud 50 may be within a range of approximately 3.40 to approximately 5.10, may be within a range of approximately 3.70 to approximately 4.90, may be within a range of approximately 4.00 to approximately 4.70, or may be within a range of approximately 4.30 to approximately 4.50. In addition, in certain embodiments, a ratio of the outer diameter ODS of the shroud 50 relative to the inner diameter IDS of the shroud 50 may be within a range of approximately 1.15 to approximately 1.35, may be within a range of approximately 1.18 to approximately 1.32, may be within a range of approximately 1.20 to approximately 1.30, or may be within a range of approximately 1.22 to approximately 1.28.
In addition, in certain embodiments, a ratio of the outer diameter ODS of the shroud 50 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.90 to approximately 0.97, may be within a range of approximately 0.91 to approximately 0.96, or may be within a range of approximately 0.92 to approximately 0.95. In addition, in certain embodiments, a ratio of the outer diameter ODS of the shroud 50 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.57 to approximately 0.69, may be within a range of approximately 0.59 to approximately 0.67, or may be within a range of approximately 0.61 to approximately 0.65.
In addition, as illustrated in
In certain embodiments, a ratio of the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 relative to the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 may be within a range of approximately 0.19 to approximately 0.34, may be within a range of approximately 0.21 to approximately 0.32, may be within a range of approximately 0.23 to approximately 0.30, or may be within a range of approximately 0.25 to approximately 0.28. In addition, in certain embodiments, a ratio of the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 relative to the outer diameter ODIVD at the discharge end 90 of the inlet venturi 58 may be within a range of approximately 0.23 to approximately 0.38, may be within a range of approximately 0.25 to approximately 0.36, may be within a range of approximately 0.27 to approximately 0.34, or may be within a range of approximately 0.29 to approximately 0.32.
In addition, in certain embodiments, a ratio of the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.18 to approximately 0.27, may be within a range of approximately 0.19 to approximately 0.26, may be within a range of approximately 0.20 to approximately 0.25, or may be within a range of approximately 0.21 to approximately 0.24. In addition, in certain embodiments, a ratio of the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.12 to approximately 0.18, may be within a range of approximately 0.13 to approximately 0.17, or may be within a range of approximately 0.14 to approximately 0.16.
In certain embodiments, a ratio of the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 relative to the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 may be within a range of approximately 3.00 to approximately 4.50, may be within a range of approximately 3.20 to approximately 4.30, may be within a range of approximately 3.40 to approximately 4.10, or may be within a range of approximately 3.60 to approximately 3.90. In addition, in certain embodiments, a ratio of the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 relative to the outer diameter ODIVI at the discharge end 90 of the inlet venturi 58 may be within a range of approximately 1.00 to approximately 1.30, may be within a range of approximately 1.04 to approximately 1.26, may be within a range of approximately 1.08 to approximately 1.22, or may be within a range of approximately 1.12 to approximately 1.18.
In addition, in certain embodiments, a ratio of the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.80 to approximately 0.88, may be within a range of approximately 0.81 to approximately 0.87, may be within a range of approximately 0.82 to approximately 0.86, or may be within a range of approximately 0.83 to approximately 0.85. In addition, in certain embodiments, a ratio of the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.52 to approximately 0.61, may be within a range of approximately 0.53 to approximately 0.60, may be within a range of approximately 0.54 to approximately 0.59, or may be within a range of approximately 0.55 to approximately 0.58.
In certain embodiments, a ratio of the outer diameter ODIVD at the discharge end 90 of the inlet venturi 58 relative to the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 may be within a range of approximately 2.50 to approximately 4.00, may be within a range of approximately 2.70 to approximately 3.80, may be within a range of approximately 2.90 to approximately 3.60, or may be within a range of approximately 3.10 to approximately 3.40. In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the discharge end 90 of the inlet venturi 58 relative to the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 may be within a range of approximately 0.77 to approximately 1.00, may be within a range of approximately 0.80 to approximately 0.96, may be within a range of approximately 0.83 to approximately 0.92, or may be within a range of approximately 0.85 to approximately 0.89.
In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the discharge end 90 of the inlet venturi 58 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.69 to approximately 0.77, may be within a range of approximately 0.70 to approximately 0.76, may be within a range of approximately 0.71 to approximately 0.75, or may be within a range of approximately 0.72 to approximately 0.74. In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the discharge end 90 of the inlet venturi 58 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.44 to approximately 0.54, may be within a range of approximately 0.45 to approximately 0.53, may be within a range of approximately 0.46 to approximately 0.52, or may be within a range of approximately 0.47 to approximately 0.51.
In certain embodiments, a ratio of the outer diameter ODIVI at the inlet end 88 of the inlet venturi 58 relative to the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 may be within a range of approximately 3.70 to approximately 5.20, may be within a range of approximately 3.90 to approximately 5.00, may be within a range of approximately 4.10 to approximately 4.80, or may be within a range of approximately 4.30 to approximately 4.60. In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the inlet end 88 of the inlet venturi 58 relative to the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 may be within a range of approximately 1.04 to approximately 1.32, may be within a range of approximately 1.08 to approximately 1.28, may be within a range of approximately 1.12 to approximately 1.24, or may be within a range of approximately 1.16 to approximately 1.20. In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the inlet end 88 of the inlet venturi 58 relative to the outer diameter ODIVD at the discharge end 90 of the inlet venturi 58 may be within a range of approximately 1.21 to approximately 1.50, may be within a range of approximately 1.25 to approximately 1.46, may be within a range of approximately 1.29 to approximately 1.42, or may be within a range of approximately 1.33 to approximately 1.38.
In addition, in certain embodiments, a ratio of the outer diameter ODIVI at the inlet end 88 of the inlet venturi 58 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.62 to approximately 0.71, may be within a range of approximately 0.63 to approximately 0.70, may be within a range of approximately 0.64 to approximately 0.69, or may be within a range of approximately 0.65 to approximately 0.68. It is noted that, in certain embodiments, the outer diameter ODIVI at the inlet end 88 of the inlet venturi 58 may be substantially similar to the outer diameter ODOH of the outer housing 12 of the fan system 10 such that the inlet venturi 58 and the outer housing 12 are generally flush with each other where the inlet venturi 58 and the outer housing 12 are adjacent each other.
In certain embodiments, a ratio of the throat inner diameter IDIVT of the inlet venturi 58 relative to the axial length LIV along the central longitudinal axis 54 of the inlet venturi 58 may be within a range of approximately 2.60 to approximately 3.60, may be within a range of approximately 2.70 to approximately 3.50, may be within a range of approximately 2.80 to approximately 3.40, or may be within a range of approximately 2.90 to approximately 3.30. In addition, in certain embodiments, a ratio of the throat inner diameter IDIVT of the inlet venturi 58 relative to the inner diameter IDIVI at the inlet end 88 of the inlet venturi 58 may be within a range of approximately 0.73 to approximately 0.92, may be within a range of approximately 0.76 to approximately 0.89, may be within a range of approximately 0.79 to approximately 0.86, or may be within a range of approximately 0.81 to approximately 0.84. In addition, in certain embodiments, a ratio of the throat inner diameter IDIVT of the inlet venturi 58 relative to the outer diameter ODIVI at the discharge end 90 of the inlet venturi 58 may be within a range of approximately 0.92 to approximately 0.99, may be within a range of approximately 0.93 to approximately 0.98, may be within a range of approximately 0.94 to approximately 0.97, or may be within a range of approximately 0.95 to approximately 0.96.
In addition, in certain embodiments, a ratio of the throat inner diameter IDIVT of the inlet venturi 58 relative to the outer diameter ODOH of the outer housing 12 of the fan system 10 may be within a range of approximately 0.66 to approximately 0.74, may be within a range of approximately 0.67 to approximately 0.73, may be within a range of approximately 0.68 to approximately 0.72, or may be within a range of approximately 0.69 to approximately 0.71. In addition, in certain embodiments, a ratio of the throat inner diameter IDIVT of the inlet venturi 58 relative to the axial length LOH of the outer housing 12 may be within a range of approximately 0.43 to approximately 0.51, may be within a range of approximately 0.44 to approximately 0.50, may be within a range of approximately 0.45 to approximately 0.49, or may be within a range of approximately 0.46 to approximately 0.48.
As illustrated in
As illustrated in
In certain embodiments, the radii of curvature of the inlet venturi segments 100 of the inlet venturi 58 may vary from a first inlet venturi segment 100A at the inlet end 88 of the inlet venturi 58 to a last inlet venturi segment 100F at the discharge end 90 of the inlet venturi 58. For example, in certain embodiments, the radii of curvature from the first inlet venturi segment 100A at the inlet end 88 of the inlet venturi 58 to the last inlet venturi segment 100F at the discharge end 90 of the inlet venturi 58 may gradually increase from the first inlet venturi segment 100A to a maximum radius of curvature, for example, between adjacent inlet venturi segments 100 at the throat 92 of the inlet venturi 58, and then gradually decrease to the last inlet venturi segment 100F. It is noted that, unlike the convex hub cone segments 74 of the hub cone 46, the inlet venturi segments 100 of the inlet venturi 58 are instead concave in shape.
As also illustrated in
As described herein, the plurality of fan blades 48 of the wheel assembly 24 are directly coupled to both the hub cone 46 and the shroud 50 such that the hub cone 46, the plurality of fan blades 48, and the shroud 50 form an integrated wheel when assembled together.
As illustrated in
As also illustrated in
In addition, in certain embodiments, a ratio of a width wHCE of the hub cone edge 116 of the fan blade 48, for example, from the leading hub cone-blade intersection point 128 to the trailing hub cone-blade intersection point 132, relative to a total width wB of the fan blade 48 may be within a range of approximately 0.64 to approximately 0.72, may be within a range of approximately 0.65 to approximately 0.71, may be within a range of approximately 0.66 to approximately 0.70, or may be within a range of approximately 0.67 to approximately 0.69. In addition, in certain embodiments, a ratio of a width wSE of the shroud edge 118 of the fan blade 48, for example, from the leading shroud-blade intersection point 130 to the trailing shroud-blade intersection point 134, relative to the total width wB of the fan blade 48 may be within a range of approximately 0.80 to approximately 0.88, may be within a range of approximately 0.81 to approximately 0.87, may be within a range of approximately 0.82 to approximately 0.86, or may be within a range of approximately 0.83 to approximately 0.85.
As illustrated in
As illustrated in
As illustrated in
As illustrated, in certain embodiments, a ratio of a height hGV of the guide vane 56 relative to a length LGV of the guide vane 56 may be within a range of approximately 0.66 to approximately 0.77, may be within a range of approximately 0.68 to approximately 0.79, may be within a range of approximately 0.70 to approximately 0.77, or may be within a range of approximately 0.72 to approximately 0.75. In addition, in certain embodiments, a ratio of a width wGV of the guide vane 56 relative to the length LGV of the guide vane 56 may be within a range of approximately 0.33 to approximately 0.49, may be within a range of approximately 0.35 to approximately 0.47, may be within a range of approximately 0.37 to approximately 0.45, or may be within a range of approximately 0.39 to approximately 0.43. In addition, in certain embodiments, a ratio of the width wGV of the guide vane 56 relative to the height hGV of the guide vane 56 may be within a range of approximately 0.48 to approximately 0.63, may be within a range of approximately 0.50 to approximately 0.61, may be within a range of approximately 0.52 to approximately 0.59, or may be within a range of approximately 0.54 to approximately 0.57.
As described above, the dimensions of the inline centrifugal mixed flow fan system 10 described herein have been specifically designed to improve certain performance parameters of the inline centrifugal mixed flow fan system 10 as compared to conventional fan systems, such as conventional centrifugal fan systems and axial fan systems. In particular, the relatively compact and lightweight design of the inline centrifugal mixed flow fan system 10 described herein combines the relatively higher volume advantage of axial fan systems with the relatively lower sound and relatively higher efficiency of centrifugal fan systems. Tables 1A through 17C provide performance parameters for various models of various sizes of the inline centrifugal mixed flow fan system 10 described herein. In particular, Tables 1A through 17A provide air performance data for seventeen models, Model 1 through Model 17, Tables 1B through 17B provide inlet sound performance data for the seventeen models, and Tables 1C through 17C provide outlet sound performance data for the seventeen models.
In particular, Tables 1A through 17A provide rotational speeds (revolutions per minute, or RPM) of the wheel assembly 24, and brake horsepower (BHP), of the inline centrifugal mixed flow fan system 10 at various static pressures (SP), for example, 0.5″ through 4.25″ in Table 1A, and various air flow rates (cubic feet per minute, or CFM), which directly relate to outlet velocities (OV) as measured in feet/minute, for the seventeen models. In addition, Tables 1B through 17B provide inlet sound power levels (Lwi), as measured in decibels (dB), of the inline centrifugal mixed flow fan system 10 by octave bands, for example, 63 Hz through 8000 Hz in Table 1B, at various rotational speeds (revolutions per minute, or RPM) of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 and nominal pressures (Ps), as measured in inches. In addition, for each combination of rotational speed (RPM) and nominal pressure (Ps), the weighted average of the inlet sound power levels (LwiA) is provided. Similarly, Tables 1C through 17C provide outlet sound power levels (Lwi), as measured in decibels (dB), of the inline centrifugal mixed flow fan system 10 by octave bands, for example, 63 Hz through 8000 Hz in Table 1C, at various rotational speeds (revolutions per minute, or RPM) of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 and nominal pressures (Ps), as measured in inches. In addition, for each combination of rotational speed (RPM) and nominal pressure (Ps), the weighted average of the outlet sound power levels (LwiA) is provided.
For each of the air performance tables, for example, Tables 1A through 17A, any and all values for static pressure (SP) and air flow rate (cubic feet per minute, or CFM), and associated outlet velocity (OV), may serve as endpoints for performance ranges that encompass the minimum and maximum values for rotational speed (revolutions per minute, or RPM) of the wheel assembly 24, and brake horsepower (BHP), of the inline centrifugal mixed flow fan system 10 that are included between these endpoints. For example, as presented in Table 1A, rotational speed of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 1758 RPM and 2441 RPM for static pressures between 1″ and 2″ and for air flow rates between 2050 CFM and 2800 CFM, and for associated outlet velocities between 1208 feet/minute and 1650 feet/minute. Similarly, as also illustrated in Table 1A, brake horsepower of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 0.57 BHP and 1.53 BHP for static pressures between 1″ and 2″ and for air flow rates between 2050 CFM and 2800 CFM, and for associated outlet velocities between 1208 feet/minute and 1650 feet/minute.
In addition, for each of the inlet sound performance tables, for example, Tables 1B through 17B, any and all values for octave band, rotational speed (revolutions per minute, or RPM) of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10, and nominal pressure (Ps) may serve as endpoints for performance ranges that encompass the minimum and maximum values for inlet sound power level (Lwi), as measured in decibels (dB), of the inline centrifugal mixed flow fan system 10 that are included between these endpoints. For example, as presented in Table 1B, inlet sound power level (Lwi) of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 50 dB and 73 dB for octave bands between 2000 Hz and 4000 Hz, rotational speeds of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 between 1000 RPM and 1500 RPM, and nominal pressures between 0.0 and 1.0 inches. Similarly, as also presented in Table 1B, weighted average of the inlet sound power level (LwiA) of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 67 dB and 80 dB for rotational speeds of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 between 1000 RPM and 1500 RPM, and nominal pressures between 0.0 and 1.0 inches.
In addition, for each of the outlet sound performance tables, for example, Tables 1C through 17C, any and all values for octave band, rotational speed (revolutions per minute, or RPM) of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10, and nominal pressure (Ps) may serve as endpoints for performance ranges that encompass the minimum and maximum values for outlet sound power level (Lwo), as measured in decibels (dB), of the inline centrifugal mixed flow fan system 10 that are included between these endpoints. For example, as presented in Table 1C, outlet sound power level (Lwo) of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 50 dB and 74 dB for octave bands between 2000 Hz and 4000 Hz, rotational speeds of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 between 1000 RPM and 1500 RPM, and nominal pressures between 0.0 and 1.0 inches. Similarly, as also presented in Table 1C, weighted average of the outlet sound power level (LwoA) of the inline centrifugal mixed flow fan system 10 for Model 1 may be between 66 dB and 81 dB for rotational speeds of the wheel assembly 24 of the inline centrifugal mixed flow fan system 10 between 1000 RPM and 1500 RPM, and nominal pressures between 0.0 and 1.0 inches.
While only certain features and embodiments of the disclosure have been illustrated and described, many modifications and changes may occur to those skilled in the art, such as variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, including temperatures, pressures, and so forth, mounting arrangements, use of materials, colors, orientations, and the like, without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described, such as those unrelated to the presently contemplated best mode of carrying out the disclosure, or those unrelated to enabling the claimed disclosure. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.
This application claims priority from and the benefit of U.S. Provisional Application Ser. No. 62/774,665, entitled “FAN SYSTEM,” filed Dec. 3, 2018, which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62774665 | Dec 2018 | US |