Fan unit for providing improved airflow within display assemblies

Information

  • Patent Grant
  • 11744054
  • Patent Number
    11,744,054
  • Date Filed
    Monday, August 23, 2021
    2 years ago
  • Date Issued
    Tuesday, August 29, 2023
    8 months ago
Abstract
A fan unit for improved airflow within a display assembly is provided. Fans are provided at a housing which includes a rear wall defining a curved shape with peaks to accommodate one of the fans and a valley between adjacent ones of the fans. The fan units induce relatively laminar flow within certain portions of an airflow pathways extending with the display assembly and relatively turbulent flows in other portions of the display assembly when activated.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application makes no priority claim.


TECHNICAL FIELD

Exemplary embodiments relate generally to fan units for providing improved airflow within display assemblies.


BACKGROUND AND SUMMARY OF THE INVENTION

Display assemblies often generate heat, such as from solar loading, ingestion of relatively warm ambient air, and/or powering of internal components such as a backlight. This results in a need to thermally manage such display assemblies, particularly when used in outdoor applications. It is known to provide back-to-back electronic displays with a common plenum, such as is provided in U.S. Pat. No. 8,373,841 issued Feb. 12, 2013, or a common heat exchanger, such as is provided in U.S. Pat. No. 8,351,014 issued Jan. 8, 2013. Fans are often used in such display assemblies to assist with such thermal management. As energy efficiency demands increase, what is needed are fan units which provide efficient airflow.


Fan units which provide efficient airflow are provided. The fan units may comprise a housing. Multiple fans may be provided within the housing. The fans may be centrifugal fans. The housing many comprise a rear wall having a generally curved shape. The rear wall may define a peak to accommodate each of the fans. The rear wall may define a valley between adjacent ones of the fans of a given unit. In this manner, the rear wall may define a generally double cosine shape. Alternatively, or additionally, the rear wall may define a generally wave or boomerang shape. The shape of the rear wall may be configured to direct air exhausted from the fans towards an exit opening.


The housing may comprise openings which accommodate intakes for each of the fans. The housing may comprise an exit opening. The exit opening may be defined, at least in part, by an angled leading edge. The exit opening may be fluidly adjacent to an entrance to a front passageway and/or an illumination device passageway of the display assembly. The front passageway may extend between a cover and an electronic display layer for a display subassembly mounted to a structural framework for the display assembly. The illumination device passageway may extend between the electronic display layer and an illumination device of the display subassembly. The angled leading edge may permit the fans to be positioned slightly back from the entrance to the front passageway and/or the illuminate device passageway, which may improve airflow.


The fan units may be configured to provide a relatively laminar flow through one or both of the front passageway and the illumination device passageway. A rear passageway may extend behind the illumination device and may be common to multiple ones of the display subassemblies mounted to the structural framework. In exemplary embodiment, each subassembly may comprise one or more closed loop fan units positioned adjacent to the entrance to said front passageway and/or said illumination device passageway for the respective subassembly. In exemplary embodiment, each of the closed loop fan units may comprise an exhaust fluidly adjacent to the entrance to one or both of said front passageway and an illumination device passageway and an intake fluidly adjacent to said rear passageway.


As each of the subassemblies may be completely or substantially identical, when positioned at opposing sides of the structural framework, the intake(s) for the closed loop fan unit(s) of a first one of the multiple subassemblies may be proximate to an exit of the front passageway and/or the illumination device passageway of a second one of the multiple subassemblies. Similarly, the intake(s) for the closed loop fan unit(s) of the second one of the multiple subassemblies may be proximate to the exit of the front passageway and/or the illumination device passageway of the first one of the multiple subassemblies. This may cause at least some of the air exiting the passageway and/or the illumination device passageway of a given one of the multiple subassemblies to be ingested by the closed loop fan unit of another of the multiple subassemblies. This may, alternatively or additionally, cause at least some of the air exiting the passageway and/or the illumination device passageway of a given one of the multiple subassemblies to travel through the rear passageway and be ingested by the closed loop fan unit of the given one of the multiple subassemblies. This arrangement may induce at least a partial cross-flow of circulating gas within the rear passageway and/or at least a partial counter flow of the circulating gas within the rear passageway when the closed loop fan unit(s) are activated, thereby resulting in relatively turbulent flow within the rear passageway, which may improve heat exchange efficiency. This may, alternatively, or additionally, permit relatively cool circulating gas exiting one of the subassemblies facing away from the sun to enter the front and/or illumination device passageways of an opposing one of the subassemblies facing the sun for added cooling.


The closed loop fan units may provide a relatively laminar flow through the front passageway and/or illumination device passageway, which may improve extraction of heat generated by solar loading and/or backlight use. Alternatively, or additionally, the laminar flow induced by the closed loop fan units may be configured to maintain a relatively flat electronic display layer for improved optics.


Further features and advantages of the systems and methods disclosed herein, as well as the structure and operation of various aspects of the present disclosure, are described in detail below with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a front perspective view of an exemplary display assembly indicating section lines A-A, B-B, and C-C;



FIG. 2 is a top sectional view of an exemplary embodiment of the display assembly of FIG. 1 taken along section line A-A;



FIG. 3 is a rear perspective view of an exemplary first subassembly of the display assembly of FIG. 1 shown in isolation;



FIG. 4 is a rear view of the first subassembly of FIG. 3;



FIG. 5 is a top perspective sectional view of exemplary fluid velocities for the display assembly of FIG. 1 taken along section line C-C (upper layer) and section line B-B (lower layer) when operated under exemplary conditions;



FIG. 5A is a top sectional view of the fluid velocities for the display assembly of FIG. 1 taken along section line C-C (upper layer) of FIG. 5;



FIG. 5B is a top sectional view of the fluid velocities for the display assembly of FIG. 1 taken along section line B-B (lower layer) of FIG. 5;



FIG. 6A is a front sectional view of exemplary fluid velocities for ambient air and circulating gas within a rear passageway of the display assembly of FIG. 1;



FIG. 6B is a front sectional view of exemplary fluid velocities for ambient air and circulating gas within another portion of the rear passageway of the display assembly of FIG. 1;



FIG. 7A is a front sectional view of exemplary fluid pressures for circulating gas within the illumination device passageway of the display assembly of FIG. 1;



FIG. 7B is a front sectional view of exemplary fluid pressures for circulating gas within the front passageway of the display assembly of FIG. 1; and



FIG. 8 is a front sectional view of exemplary fluid velocities for circulating gas within the front passageway of the display assembly of FIG. 1.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.


Embodiments of the invention are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.



FIG. 1 is a perspective view of an exemplary electronic display assembly (hereinafter also a “unit”) 10 in accordance with the present invention. The unit 10 may include a structural framework 12. The structural framework 12 may be configured for mounting to a ground surface, such as a sidewalk or street, mounting to a wall or other surface, incorporation into street furniture (e.g., phone booths, bus shelters, benches, railings, combinations thereof, or the like), combinations thereof, or the like. The structural framework 12 may comprise one or more members, panels, cladding, housings, combinations thereof, or the like.


The units 10 may comprise one or more electronic display subassemblies 14. Some or all of the electronic display subassemblies 14 may be attached to the structural framework 12 in a moveable manner, though such is not required. For example, the electronic display subassemblies 14 may be attached to the structural framework 12 in a hinged or otherwise moveable manner to permit selective movement between a closed position whereby certain parts of the units 10 are fully or partially sealed, and an open position whereby certain parts of the interior of the unit 10 are exposed for access. In exemplary embodiments, the units 10 may comprise a first and second electronic display subassemblies 14a, 14b placed on either side of the structural framework 12 such that the electronic display subassemblies 14a, 14b face in opposing directions.


One or more intakes/exhausts 16 may be provided at the units 10 for ingesting and/or exhausting ambient air.



FIG. 2 through FIG. 4 illustrate exemplary internal structures of the units 10, and the various subassemblies 14. FIG. 5 through FIG. 8 illustrate exemplary airflows within the units 10, such as within the various subassemblies 14. While two electronic display subassemblies 14a, 14b placed in a back-to-back arrangement are shown, any number of electronic display subassemblies 14 may be utilized in any arrangement with the structural framework 12. Similar or the same components used in conjunction with units 10 having multiple electronic display subassemblies 14 may use the same numbering with the addition of an “a”, “b” and/or “1”, “2”, etc. (e.g., 14 to 14a, 14b, 31a1 to 31a2). The use of a base number may refer to all such components (e.g., 14 to 14a, 14b).


Each electronic display subassembly 14 may comprise an illumination device 15. In exemplary embodiments, the illumination device 15 may comprise a number of lighting elements, such as LEDs, provided at a substrate, such as a printed circuit board. Each electronic display subassembly 14 may comprise an electronic display layer 13. The electronic display layer 13 may comprise a layer of liquid crystals, such as for a liquid crystal display, though any type or kind of electronic display may be utilized. In exemplary embodiments, the illumination device 15 may be provided rearward of the electronic display layer 13 to serve as a direct backlight. In other exemplary embodiments, the illumination device 15 may comprise one or more diffusive and/or transmissive layers and the substrate and/or lighting elements may be positioned about the edge of the electronic display layer 13 to provide edge lighting to the same. Alternatively, or additionally, one or more of the electronic display subassemblies 14 may comprise a cavity for a static poster instead of, or in addition to, the electronic display layer 13 and/or a blank panel.


The electronic display layer 13 and/or illumination device 15 of each subassembly 14 may be positioned rearward of a cover 11. The cover 11 may comprise one or more layers of a transparent or translucent material(s). In exemplary embodiments, each cover 11 may comprise two layers bonded with an optically clear adhesive, which may provide increased impact protection. One or more polarizers, anti-reflective materials, combinations thereof, or the like may be disposed on some or all of the cover 11 as a coating, film, layer, combinations thereof, or the like. The cover 11 may form part of the electronic display subassembly 14 or may be separate therefrom. The cover 11 and the structural framework 12 may together substantially enclose the units 10, such as with intakes/exhausts 16 exempted, when the subassemblies 14 are placed in a closed position. The cover 11 may be configured to move with the electronic display subassembly 14, may be configured for independent movement, and/or may be fixed to the structural framework 12. Each of the electronic display subassemblies 14 may be connected to the structural remark 12 in a hinged or otherwise movable manner, though such is not required.


Multiple such electronic display subassemblies 14 may be provided at a given structural framework 12 for a given unit 10. For example, without limitation, two such subassemblies 14 may be mountable to opposing sides of the structural framework 12 so that the electronic display layers 13 face in opposing directions, such as in a back-to-back arrangement. The electronic display subassemblies 14 may be of the same or different type and may comprise the same or different components. The electronic display subassemblies 14 and/or electronic display layers 13 may be provided in any arrangement such as portrait or landscape.


The intakes and/or exhausts 16 may be fluidly connected to one or more open loop airflow pathways 23 within the units 10. A respective one of the open loop airflow pathways 23a, 23b may extend through a respective one of the electronic display subassemblies 14a, 14b in exemplary embodiments such that an open loop airflow pathway is provided for each one of the electronic display subassemblies 14, which may be entirely separate, or partially separated from the other open loop airflow pathways, such as for a distance and rejoined. For example, without limitation, the open loop airflow pathways 23 may extend behind and along at least a portion of the illumination devices 15 for the electronic display layers 13 for accepting flows of ambient air. Each of the open loop airflow pathways 23 may comprise one or more corrugated layers 25 in exemplary embodiments. The corrugated layers 25 may improve heat transfer from the illumination device 15 to the ambient air by increasing available surface area.


One or more closed loop airflow pathways may be provided within the units 10. In exemplary embodiments, such closed loop airflow pathways may comprise at least a front passageway 26a, 26b of each of the subassemblies 14a, 14b, which may extend between the covers 11a, 11b and the electronic display layers 13a, 13b of the respective subassemblies 14a, 14b. Such closed loop airflow pathways may alternatively, or additionally, comprise at least an illumination device passageway 27a, 27b of each of the subassemblies 14a, 14b, which may extend between each of the electronic display layers 13a, 13b and the respective illumination devices 15a, 15b of the respective electronic display subassemblies 14a, 14b.


The closed loop airflow pathway may comprise a rear passageway 21, which may extend behind the electronic display subassemblies 14a, 14b, and/or the electronic display layers 13a, 13b. The rear passageway 21 may be common to at least two, or all of, the electronic display subassemblies 14 of a given unit 10. The rear passageway 21 may extend between each of the subassemblies 14. Such closed loop airflow pathways may extend entirely within the units 10, such as within outer boundaries of the structural framework 12 and/or the electronic display subassemblies 14. The rear passageway 21 may be defined, at least in part, by the structural framework 12 and/or the subassemblies 14.


Various electronic components 35a, 35b for operating the subassemblies 14a, 14b, respectively may be provided at rear panels 61a, 61b of the subassemblies 14a, 14b. The rear panels 61a, 61b may be provided rearward of the illumination devices 15a, 15b and spaced apart therefrom to at least partially define the open loop airflow pathways 23a, 23b and/or accommodate the corrugated layers 25a, 25b. In this manner, the electronic components 35a, 35b may be located within the rear passageway 21. The electronic components 35 may include, for example without limitation, video players, power supplies, processors, electronic storage devices, controllers, sensors, combinations thereof, or the like. Any number, type, and/or kind of electronic components 35 may be utilized. The electronic components 35 may be configured to control other components of the unit 10, such as, but not limited to, open loop fan units 18. Each of the open loop fan units 18 may comprise one or more fans 18a, 18b. The electronic components 35a, 35b of a respective one of the subassemblies 14a, 14b may be configured to control components of the respective one of the subassemblies 14a, 14b, though such is not necessarily required.


One or more open loop fan units 18 may be provided. Each of the subassemblies 14 may comprise open loop intakes 65 in fluid communication with the intakes/exhausts 16 for ingesting flows of ambient air 17a, 17b into the respective open loop airflow pathways 23a, 23b. Each of the subassemblies 14 may comprise an open loop exhaust 69 in fluid communication with the intakes/exhausts 16 for ingesting ambient air 17 into the respective open loop airflow pathways 23. The same of different open loop fan units 18 may be associated with each of the open loop airflow pathways 23. The open loop fan units 18 may be configured to ingest ambient air 17 into the units 10, exhaust ambient air 17 from the assembly 10, and/or move ingested ambient air 17 through the one or more open loop airflow pathways 23 when activated. Separate open loop fan units 18 may be used for each of the multiple electronic display subassemblies 14a, 14b or the open loop fan units 18 may be common to the various electronic display subassemblies 14 of such units 10.


Each of the electronic display subassemblies 14a, 14b may comprise a closed loop fan unit 20a, 20b. Each closed loop fan unit 20a, 20b may comprise one or more fans 31a1, 31a2, 31b1, 31b2 of a same or different type. The closed loop fan units 20 may be configured to move circulating gas through said one or more closed loop airflow pathways when activated. The closed and open loop fan units 20, 18 may comprise axial fans, centrifugal fans, combinations thereof, or the like. Any number or type of fan units 20, 18 may be used at any location in the units 10, and may be provided in banks or sets. Each of the fan units 20, 18 may be operated and/or controlled together or separately. The open loop airflow pathways may be partitioned and/or separated from the closed loop airflow pathways, though a complete (e.g., gas impermeable) separation or seal is not necessarily required. In exemplary embodiments, the separation may be sufficient to prevent solid and/or liquid particulate from passing therethrough and/or solid and/or liquid particulate above a given size from passing therethrough. For example, without limitation, such separation may be sufficient to meet certain ingress protection code (IPC) standards, such as but not limited to, IP65, IP67, or the like. Each of the electronic display subassemblies 14a, 14b may comprise one or more partitions 67a, 67b, gaskets, walls, panels, combinations thereof, or the like, which provide separation between the ambient air 17 in the open loop airflow pathways and the circulation gas 19 in the closed loop airflow pathway(s).


Each of the closed loop fan units 20a, 20b may comprise a respective housing 59a, 59b configured to wholly or partially surround each of the individual fans 31a1, 31a2, 31b1, 31b2 of the closed loop fan units 20a, 20b. The housings 59 may be configured to accommodate all of the closed loop fans 31 of a given fan unit 20. However, in other exemplary embodiments, each individual fans 31a1, 31a2, 31b1, 31b2 or groups of the individual fans 31a1, 31a2, 31b1, 31b2 may comprise separate housings 59. The housing 59 may be configured to permit ingestion of the circulating gas 19a/b in the rear passageway 21 and direct the ingested circulating gas 19 in an appropriate direction, such into the front passageway 26 and/or the illumination device passageway 27 of the electronic display subassembly 14. The housings 59 may be configured to provide a relatively laminar flow within the front passageway 26 and/or the illumination device passageway 27. The fans 31 may be positioned within the housings 59 to accomplish the same. For example, without limitation, an intake for the fans 31 may be fluidly adjacent to the rear passageway 21 and an exhaust for the fans 31 may be fluidly adjacent to the front passageway 26 and/or the illumination device passageway 27.


Each of the closed loop fan units 20a, 20b may be provided proximate to an entrance into one or both of the front passageway 26 and the illumination device passageway 27 for generating the flows 19c1, 19c2 through the front passageway 26 and the illumination device passageway 27, respectively, by pushing the circulating gas through the front passageway 26 and the illumination device passageway 27 when the fan(s) 31 are activated. An exhaust, relatively high-pressure side of the closed loop fan units 20 may be positioned fluidly adjacent to the front passageway 26 and/or the illumination device passageway 27, so that the pressure of the flows 19c1 and/or 19c2, particularly at the entrances to the front passageway 26 and the illumination device passageway 27, may be maintained at a relatively high level, such as greater than pressure of ambient air outside of the units 10, though such is not necessarily required. This may reduce or eliminate bowing of the electronic display layer 13 to improve optics. Alternatively, or additionally, this may reduce or eliminate tensile mechanical stresses on the electronic display layer 13 to reduce or eliminate cell breach.


The front passageway 26 and/or the rear passageway 27 may be configured to create and maintain a pressure differential between the flows 19c1 and 19c2 of the circulating gas 19 in the front passageway 26 and/or the rear passageway 27 sufficient to generate net forces at the electronic display layers 13 which reduces or eliminates bowing of the electronic display layers 13. In exemplary embodiments, the pressure of the flow 19c1 in the front passageway 26 may be maintained at a higher level than the flow 19c2 in the illumination device passageway 27, resulting in rearward forces against the electronic display layer 13 to reduce or eliminate outward bowing. Such pressure differentials may be generated using features including, but not limited to, those shown and/or described in U.S. Pat. No. 10,398,066 issued Aug. 27, 2019, the disclosures of which are hereby incorporated by reference as if fully restated herein.


In exemplary embodiments, positive pressure may be maintained in only the front passageway 26 and/or relatively high pressure may be maintained in the front passageway 26 (e.g., relative to pressure in the flow 19b in the illumination device passageway 27) such that the electronic display layer 13 is pushed towards the illumination device 15 when the closed loop fan unit 20 is operated. Optical spikes 29 or other support structures may be utilized within the illumination device passageway 27 to reduce or eliminate movement of the electronic display layer 13 towards the illumination device 15, such as past the optical spikes 29. The optical spikes 29 may comprise one or more optically transmissible materials. The optical spikes 29 may comprise rods, cones, or the like positioned within the illumination device cavity 27 and may be configured to limit or prevent rearward travel of the electronic display layer 13. The optical spikes 29 may exert normal, compressive forces on the electronic display layer 13, particularly in conjunction with the pressure of the flow 19a of the circulating gas within the front passageway 26. This may be particularly beneficial when unable to generate positive or sufficiently high pressure for the flow 19c2 of the circulating gas within the illumination device passageway 27. This may occur, for example, without limitation, due to variations in ambient air and/or circulating gas pressure. Circulating gas pressure, in particular, may vary due to temperature variations in the circulating gas (e.g., due to solar loading) and/or ambient temperatures, which may affect the unit's 10 ability to remove heat in air-to-air heat exchange.


Any number, type, kind, and/or arrangement of such optical spikes 29 may be utilized. In embodiments where more than one electronic display layer 13a, 13b is utilized, more than one set of optical spikes 29a, 29b for each respective one of the electronic display layers 13a, 13b of the same or different type may likewise be utilized, though such is not required. Such optical spikes 29 are not necessarily required, and may be omitted from view of certain embodiments provided herein to more clearly illustrate other components. However, such optical spikes 29 may be utilized in the same or similar arrangements in such embodiments, even if not expressly provided in the figures.


The housing 59 for the closed loop fan units 20 may comprise a generally curved shaped. A rear wall 63 of the housing 59 may define one or more peaks to accommodate respective ones of the fans 31 and a valley between adjacent ones of the fans 31. Each closed loop fan unit 20 may comprise any number of fans 31, and/or multiple closed loop fan units 20 and/or housings 59 may be used with each side assembly 14. Because the closed loop fans 31, particularly when provided as centrifugal fans, may be configured to exhaust fluid in a generally pinwheel pattern (e.g., outward from a center), the curved shape of the rear wall 63 may encourage relatively laminar flow into the front passageway 26 and/or illumination device passageway 27. The fans 31 may be spaced from the entrance to the front passageway 26 and/or illumination device passageway 27 and a leading edge 71a, 71b of the housings 59a, 59b may extend at an angle to encourage flow into the front passageway 26 and/or illumination device passageway 27. The rear wall 63 may define a generally sinusoidal shape curve by way of non-limiting example. Alternatively, or additionally, the rear wall 63 may define a generally wave or boomerang shape. The shape of the rear wall 63 need not be perfectly curved or smooth and may include one or more portions of which are planar.


When positioned on opposing sides of the structural framework 12, the closed loop fan units 20a, 20b may be located on opposing sides of the unit 10 from one another. This may be particularly true where the electronic display subassemblies 14a, 14b may be the same, or substantially the same. This arrangement may permit at least a first portion 19a of the circulating gas exiting the front passageways 26 and/or illumination device passageways 27 to cross over from one of the electronic display subassemblies 14a, 14b to the other. This may occur more often where the exiting portion 19a of the circulating gas generally aligns with an intake for the opposing closed loop fan unit 20, as shown, for example without limitation, in FIG. 5A. This may create a generally looping, continuous flow of the circulating gas 19 about both electronic display subassemblies 14. In such cases, at least a portion of the circulating gas 19 may traverse, rather than extend through, the rear passageway 21. This may be particularly helpful where one of the electronic display subassemblies 14a is not (or is less directly) exposed to the sun, thereby maintaining the circulating gas 19c1 in the front passageway 26a relatively cool, which may be immediately ingested to the front passageway 26b of the opposing one of the subassemblies 14b, which is (or is more directly) exposed to the sun, thereby removing heat generated by solar loading.


Some of the portion of the circulating gas 19 front passageways 26 and/or illumination device passageways 27 may not be ingested by the opposing closed loop fan unit 20 and may instead be reflected by various components, such as the rear panel 61, of the opposing subassembly 14 and cause generally chaotic or turbulent flow within the rear passageway 21.


A second portion 19b of the circulating gas exiting the front passageways 26a and/or illumination device passageways 27a may be attracted back to the closed loop fan 20a of the respective electronic display subassembly 14a from which it exited the exiting the front passageways 26a and/or illumination device passageways 27a such that the circulating gas forms a loop about one of the electronic display layers 13. This may be true of the other electronic display subassembly or subassemblies 14b of a given unit 10. This may create a generally counterflow within the rear passageway 21. In this manner, at least a portion of the circulating gas 19 may extend through the rear passageway. This may improve heat transfer.


The intersection of the second portions 19b of the circulating gas from the multiple subassemblies 14 may generate turbulent flow within the rear passageway 21. Furthermore, some of the second portion 19b may be reflected off the opposing electronic display subassembly 14, such as the housing 59 and/or rear panel 17, thereby increasing the turbulence. This may improve heat transfer by itself. It may also ensure adequate mixing between the first and second portions of the circulating gas 19a, 19b for relatively even thermal management.


Portions of an exit from the front passageway 26 and/or illumination device passageway 27 may not generally align with intakes for fans 31 of opposing closed loop fan units 20, such as shown, for example, without limitation, in FIG. 5B. Instead, such portion of the exit from the front passageway 26 and/or illumination device passageway 27 may generally align with spaces between fans 31 of the opposing closed loop fan unit 20. This may result in a greater portion of the circulating gas 19c being directed through the rear passageway 21, rather than being ingested into the opposing one of the closed loop fan units 20, at least at these such locations, thereby increasing turbulence within the rear passageway 21. This may be facilitated, at least in part, by the spaced arrangement of the closed loop fans 31a1, 31a2, 31b1, 31b2 in a given closed loop fan unit 20a, 20b. The curved rear wall 63 of the housing 59 may facilitate this design by causing such existing circulating gas 19c to impact the rear panels 61 and be reflected or otherwise scattered therefrom.


As demonstrated by the various pressure and velocity plots of FIGS. 5-8, which are provided as non-limiting examples, this may induce relatively laminar flows within the front passageway 26 and/or illumination device passageway 27 and relatively turbulent flow within the rear passageway 21. The relatively laminar flows may provide consistent thermal management and improved optics while the relatively turbulent flows may improve heat transfer.


Any embodiment of the present invention may include any of the features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.


Certain operations described herein may be performed by one or more electronic devices. Each electronic device may comprise one or more processors, electronic storage devices, executable software instructions, and the like configured to perform the operations described herein. The electronic devices may be general purpose computers or specialized computing devices. The electronic devices may comprise personal computers, smartphones, tablets, databases, servers, or the like. The electronic connections and transmissions described herein may be accomplished by wired or wireless means. The computerized hardware, software, components, systems, steps, methods, and/or processes described herein may serve to improve the speed of the computerized hardware, software, systems, steps, methods, and/or processes described herein.

Claims
  • 1. A fan unit for improved airflow within a display assembly, said fan unit comprising: a plurality of fans, each comprising a centrifugal fan; anda housing for said plurality of fans comprising an angled leading edge, a rear wall defining a plurality of peaks, each configured to accommodate one of said plurality of fans, a valley between adjacent ones of said plurality of fans, and a lower surface of said housing defined by a rear panel of an electronic display subassembly of said display assembly, wherein an intake for each of said plurality of fans is placed adjacent to an opening in an upper surface of said housing.
  • 2. The fan unit of claim 1 wherein: said leading edge is configured to extend over an entrance to a front passageway and an illumination device passageway of said electronic display subassembly of said display assembly when said fan unit is installed at said electronic display subassembly.
  • 3. A display assembly with improved airflow, said display assembly comprising: a structural framework;one or more electronic display subassemblies, each attached to said structural framework and comprising a fan unit;each of said fan units comprising: a plurality of fans; anda housing for said plurality of fans comprising a rear wall having a curved shape defining a plurality of peaks, each configured to accommodate one of said plurality of fans, a valley between adjacent ones of said plurality of fans, and a lower surface defined by a rear panel of the respective one of said one or more electronic display subassemblies.
  • 4. The display assembly of claim 3 wherein: each of said fan units is positioned within a closed loop airflow pathway;said closed loop airflow pathway extends within said display assembly; andeach of said fan units is configured to move circulating gas through said closed loop airflow pathway when activated.
  • 5. The display assembly of claim 4 wherein: said closed loop airflow pathway comprises passageways extending through each of said one or more electronic display subassemblies.
  • 6. The display assembly of claim 5 wherein: an intake portion of each of said plurality of fans is fluidly adjacent to said rear passageway; andan exhaust portion of each of said plurality of fans is fluidly adjacent to said passageways of said closed loop airflow pathway extending through each of said one or more electronic display subassemblies.
  • 7. The display assembly of claim 6 wherein: activation of said fan units of said one or more electronic display subassemblies is configured to generate a relatively turbulent flow of said circulating gas within said rear passageway and a relatively laminar flow of said circulating gas within said passageways of said closed loop airflow pathway extending through each of said one or more electronic display subassemblies.
  • 8. The display assembly of claim 7 further comprising: an open loop airflow pathway for ambient air.
  • 9. The display assembly of claim 4 wherein: each of said one or more electronic display subassemblies comprise: an electronic display layer;an illumination device for providing illumination to said electronic display layer when powered; anda cover positioned forward of said electronic display layer;each of said fan units is located at a first side of a respective one of said electronic display subassemblies;a rear passageway is provided rearward of each of said one or more electronic display subassemblies; andsaid closed loop airflow pathway comprises portions of said first and second electronic display subassemblies and said rear passageway.
  • 10. The display assembly of claim 9 wherein: each of said plurality of fans comprises a centrifugal fan; andan intake for each of said plurality of fans is placed adjacent to an opening in an upper surface of said housing.
  • 11. The display assembly of claim 10 wherein: said housing comprises an angled leading edge;said leading edge is configured to extend over an entrance to a front passageway and an illumination device passageway of said respective one of said one or more electronic display subassemblies; andsaid passageways comprise front passageways extending between said cover and said electronic display layer of said respective one of said one or more electronic display subassemblies and illumination device passageways extending between said electronic display layer and said illumination device of said respective one of said one or more electronic display subassemblies.
  • 12. The display assembly of claim 11 wherein: activation of said fan units of said one or more electronic display subassemblies is configured to generate a relatively turbulent flow of said circulating gas within said rear passageway and a relatively laminar flow of said circulating gas within said front passageways and said illumination device passageways of said one or more electronic display subassemblies.
  • 13. The display assembly of claim 12 wherein: said one or more electronic display subassemblies comprise at least a first and second electronic display subassembly mounted to opposing sides of said structural framework.
  • 14. The display assembly of claim 13 wherein: each of said one or more electronic display subassemblies is movably mounted to said structural framework.
  • 15. A display assembly with improved airflow, said display assembly comprising: a structural framework;a plurality of electronic display subassemblies, each movably attached to a respective side of said structural framework and comprising: an electronic display layer;an illumination device;a rear panel; anda passageway;a fan unit mounted to said rear panel, wherein each of said fan units comprise: a plurality of fans; anda housing for said plurality of fans comprising: a rear wall having a curved shape defining: a plurality of peaks, each configured to accommodate one of said plurality of fans; and a valley between adjacent ones of said plurality of fans; anda lower surface defined by the rear panel;a rear passageway located within said structural framework and between each of said plurality of electronic display subassemblies;a closed loop airflow pathway for circulating gas comprising said rear passageway and said passageways of said plurality of electronic display subassemblies; andan open loop airflow pathway for ambient air.
  • 16. The display assembly of claim 15 wherein: activation of said fan units is configured to induce a relatively laminar flow of said circulating gas within said passageways of said closed loop airflow pathway extending within each of said plurality of electronic display subassemblies and a relatively turbulent flow of said circulating gas within said rear passageway.
US Referenced Citations (528)
Number Name Date Kind
4093355 Kaplit et al. Jun 1978 A
4292370 Pekko Sep 1981 A
4593978 Mourey et al. Jun 1986 A
4634225 Haim et al. Jan 1987 A
4748765 Martin Jun 1988 A
4763993 Vogeley et al. Aug 1988 A
4921041 Akachi May 1990 A
4952783 Aufderheide et al. Aug 1990 A
4952925 Haastert Aug 1990 A
4976536 Vogeley et al. Dec 1990 A
5029982 Nash Jul 1991 A
5088806 McCartney et al. Feb 1992 A
5132666 Fahs Jul 1992 A
5247374 Terada Sep 1993 A
5255029 Vogeley et al. Oct 1993 A
5282114 Stone Jan 1994 A
5285677 Oehler Feb 1994 A
5293930 Pitasi Mar 1994 A
5351176 Smith Stephen W. et al. Sep 1994 A
5432526 Hyatt Jul 1995 A
5535816 Ishida Jul 1996 A
5559614 Urbish et al. Sep 1996 A
5621614 O'Neill Apr 1997 A
5657641 Cunningham et al. Aug 1997 A
5748269 Harris et al. May 1998 A
5765743 Sakiura et al. Jun 1998 A
5767489 Ferrier Jun 1998 A
5808418 Pitman et al. Sep 1998 A
5818010 McCann Oct 1998 A
5818694 Daikoku et al. Oct 1998 A
5835179 Yamanaka Nov 1998 A
5864465 Liu Jan 1999 A
5869818 Kim Feb 1999 A
5869919 Sato et al. Feb 1999 A
5903433 Gudmundsson May 1999 A
5920367 Kajimoto et al. Jul 1999 A
5991153 Heady et al. Nov 1999 A
6003015 Kang et al. Dec 1999 A
6007205 Fujimori Dec 1999 A
6043979 Shim Mar 2000 A
6089751 Conover et al. Jul 2000 A
6104451 Matsuoka et al. Aug 2000 A
6125565 Hillstrom Oct 2000 A
6157432 Helbing Dec 2000 A
6181070 Dunn et al. Jan 2001 B1
6191839 Briley et al. Feb 2001 B1
6198222 Chang Mar 2001 B1
6211934 Habing et al. Apr 2001 B1
6215655 Heady et al. Apr 2001 B1
6351381 Bilski et al. Feb 2002 B1
6359390 Nagai Mar 2002 B1
6392727 Larson et al. May 2002 B1
6417900 Shin et al. Jul 2002 B1
6428198 Saccomanno et al. Aug 2002 B1
6437673 Nishida et al. Aug 2002 B1
6473150 Takushima et al. Oct 2002 B1
6476883 Salimes et al. Nov 2002 B1
6493440 Gromatsky et al. Dec 2002 B2
6504713 Pandolf et al. Jan 2003 B1
6535266 Nemeth et al. Mar 2003 B1
6628355 Takahara Sep 2003 B1
6643130 DeMarchis et al. Nov 2003 B1
6683639 Driessen-Olde Scheper et al. Jan 2004 B2
6701143 Dukach et al. Mar 2004 B1
6714410 Wellhofer Mar 2004 B2
6727468 Nemeth Apr 2004 B1
6742583 Tikka Jun 2004 B2
6812851 Dukach et al. Nov 2004 B1
6825828 Burke et al. Nov 2004 B2
6833992 Kusaka et al. Dec 2004 B2
6839104 Taniguchi et al. Jan 2005 B2
6850209 Mankins et al. Feb 2005 B2
6885412 Ohnishi et al. Apr 2005 B2
6886942 Okada et al. May 2005 B2
6891135 Pala et al. May 2005 B2
6909486 Wang et al. Jun 2005 B2
6943768 Cavanaugh et al. Sep 2005 B2
6961108 Wang et al. Nov 2005 B2
7015470 Faytlin et al. Mar 2006 B2
7059757 Shimizu Jun 2006 B2
7083285 Hsu et al. Aug 2006 B2
7157838 Thielemans et al. Jan 2007 B2
7161803 Heady Jan 2007 B1
7190416 Paukshto et al. Mar 2007 B2
7190587 Kim et al. Mar 2007 B2
7209349 Chien et al. Apr 2007 B2
7212403 Rockenfell May 2007 B2
7259964 Yamamura et al. Aug 2007 B2
7269023 Nagano Sep 2007 B2
7284874 Jeong et al. Oct 2007 B2
7396145 Wang et al. Jul 2008 B2
7447018 Lee et al. Nov 2008 B2
7452121 Cho et al. Nov 2008 B2
7457113 Kumhyr et al. Nov 2008 B2
7466546 Park Dec 2008 B2
7480140 Hara et al. Jan 2009 B2
7492589 Park Feb 2009 B2
7518864 Kimura Apr 2009 B2
7535543 Dewa et al. May 2009 B2
7591508 Chang Sep 2009 B2
7602469 Shin Oct 2009 B2
D608775 Leung Jan 2010 S
7667964 Kang et al. Feb 2010 B2
7682047 Hsu et al. Mar 2010 B2
7752858 Johnson et al. Jul 2010 B2
7753567 Kang et al. Jul 2010 B2
7762707 Kim et al. Jul 2010 B2
7800706 Kim et al. Sep 2010 B2
7813124 Karppanen Oct 2010 B2
7903416 Chou Mar 2011 B2
3004648 Dunn Aug 2011 A1
7995342 Nakamichi et al. Aug 2011 B2
8035968 Kwon et al. Oct 2011 B2
8081267 Moscovitch et al. Dec 2011 B2
8081465 Nishiura Dec 2011 B2
8102173 Merrow Jan 2012 B2
8102483 Perry et al. Jan 2012 B2
8142027 Sakai Mar 2012 B2
8208115 Dunn Jun 2012 B2
8223311 Kim et al. Jul 2012 B2
8241573 Banerjee et al. Aug 2012 B2
8248784 Nakamichi et al. Aug 2012 B2
8254121 Lee et al. Aug 2012 B2
8269916 Ohkawa Sep 2012 B2
8270163 Nakamichi et al. Sep 2012 B2
8274622 Dunn Sep 2012 B2
8274789 Nakamichi et al. Sep 2012 B2
8300203 Nakamichi et al. Oct 2012 B2
8310824 Dunn et al. Nov 2012 B2
8320119 Isoshima et al. Nov 2012 B2
8351014 Dunn Jan 2013 B2
8358397 Dunn Jan 2013 B2
8369083 Dunn et al. Feb 2013 B2
8373841 Dunn Feb 2013 B2
8379182 Dunn Feb 2013 B2
8400608 Takahashi et al. Mar 2013 B2
8472174 Idems et al. Jun 2013 B2
8472191 Yamamoto et al. Jun 2013 B2
8482695 Dunn Jul 2013 B2
8497972 Dunn et al. Jul 2013 B2
8590602 Fernandez Nov 2013 B2
8649170 Dunn et al. Feb 2014 B2
8649176 Okada et al. Feb 2014 B2
8654302 Dunn et al. Feb 2014 B2
8678603 Zhang Mar 2014 B2
8693185 Dunn et al. Apr 2014 B2
8700226 Schuch et al. Apr 2014 B2
8711321 Dunn et al. Apr 2014 B2
8749749 Hubbard Jun 2014 B2
8755021 Hubbard Jun 2014 B2
8758144 Williams et al. Jun 2014 B2
8760613 Dunn Jun 2014 B2
8767165 Dunn Jul 2014 B2
8773633 Dunn et al. Jul 2014 B2
8804091 Dunn et al. Aug 2014 B2
8823916 Hubbard et al. Sep 2014 B2
8827472 Takada Sep 2014 B2
8854572 Dunn Oct 2014 B2
8854595 Dunn Oct 2014 B2
8879042 Dunn Nov 2014 B2
8976313 Kim et al. Mar 2015 B2
8988647 Hubbard Mar 2015 B2
9030641 Dunn May 2015 B2
9089079 Dunn Jul 2015 B2
9119325 Dunn et al. Aug 2015 B2
9119330 Hubbard et al. Aug 2015 B2
9173322 Dunn Oct 2015 B2
9173325 Dunn Oct 2015 B2
9282676 Diaz Mar 2016 B1
9285108 Dunn et al. Mar 2016 B2
9313917 Dunn et al. Apr 2016 B2
9338923 Lee et al. May 2016 B2
9357673 Chin May 2016 B2
9370127 Dunn Jun 2016 B2
9414516 Chin et al. Aug 2016 B2
9448569 Schuch et al. Sep 2016 B2
9451060 Bowers et al. Sep 2016 B1
9451733 Dunn et al. Sep 2016 B2
9456525 Yoon et al. Sep 2016 B2
9470924 Dunn et al. Oct 2016 B2
9500896 Dunn et al. Nov 2016 B2
9516485 Bowers et al. Dec 2016 B1
9549490 Hubbard Jan 2017 B2
9594271 Dunn et al. Mar 2017 B2
9600026 Birgeoglu et al. Mar 2017 B2
9613548 DeMars Apr 2017 B2
9622392 Bowers et al. Apr 2017 B1
9629287 Dunn Apr 2017 B2
9648790 Dunn et al. May 2017 B2
9655289 Dunn et al. May 2017 B2
9703230 Bowers et al. Jul 2017 B2
9723765 DeMars Aug 2017 B2
9743553 Kim et al. Aug 2017 B2
9756739 Russell-Clarke et al. Sep 2017 B2
9797588 Dunn et al. Oct 2017 B2
9801305 Dunn et al. Oct 2017 B2
9823690 Bowers et al. Nov 2017 B2
9835893 Dunn Dec 2017 B2
9861007 Yoon et al. Jan 2018 B2
9894800 Dunn Feb 2018 B2
10070540 Campagna et al. Sep 2018 B2
10080316 Dunn et al. Sep 2018 B2
10088702 Dunn et al. Oct 2018 B2
10165712 Jang et al. Dec 2018 B1
10180591 Lee et al. Jan 2019 B2
10194564 Dunn et al. Jan 2019 B2
10212845 Dunn et al. Feb 2019 B2
10278311 DeMars Apr 2019 B2
10278312 Davis et al. Apr 2019 B1
10306781 Cho et al. May 2019 B2
10314212 Hubbard Jun 2019 B2
10359659 Dunn et al. Jul 2019 B2
10359817 Fun et al. Jul 2019 B2
10383238 Fun et al. Aug 2019 B2
10398066 Dunn et al. Aug 2019 B2
10405456 Jang et al. Sep 2019 B2
10409323 Birgeoglu et al. Sep 2019 B2
10420257 Dunn et al. Sep 2019 B2
10485113 Dunn et al. Nov 2019 B2
10485147 Oh et al. Nov 2019 B2
10485148 Oh et al. Nov 2019 B2
10488896 Simpson Nov 2019 B2
10499516 Dunn et al. Dec 2019 B2
10506738 Dunn Dec 2019 B2
10506740 Dunn et al. Dec 2019 B2
10524384 Dunn et al. Dec 2019 B2
10524397 Dunn et al. Dec 2019 B2
10548247 Demars Jan 2020 B2
10624218 Dunn et al. Apr 2020 B2
10660245 Dunn et al. May 2020 B2
10687446 Dunn et al. Jun 2020 B2
10716224 Dunn et al. Jul 2020 B2
10721836 Dunn et al. Jul 2020 B2
10736245 Dunn et al. Aug 2020 B2
10747261 Birgeoglu et al. Aug 2020 B2
10754184 Wang et al. Aug 2020 B2
10757844 Dunn et al. Aug 2020 B2
10795413 Dunn Oct 2020 B1
10820445 Diaz Oct 2020 B2
10827656 Hubbard Nov 2020 B2
10827657 Lee Nov 2020 B2
10905035 Whitehead et al. Jan 2021 B2
10925174 Dunn et al. Feb 2021 B2
10969615 Wang et al. Apr 2021 B2
10973156 Dunn et al. Apr 2021 B2
11013142 Dunn et al. May 2021 B2
11016547 Whitehead et al. May 2021 B2
11019735 Dunn May 2021 B2
11032923 Dunn et al. Jun 2021 B2
11096317 Dunn Aug 2021 B2
20010001459 Savant et al. May 2001 A1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20010023914 Oddsen, Jr. Sep 2001 A1
20010032404 Hillstrom Oct 2001 A1
20020009978 Dukach et al. Jan 2002 A1
20020033919 Sanelle et al. Mar 2002 A1
20020050793 Cull et al. May 2002 A1
20020065046 Mankins et al. May 2002 A1
20020084891 Mankins et al. Jul 2002 A1
20020101553 Enomoto et al. Aug 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020126248 Yoshia Sep 2002 A1
20020148600 Bosch et al. Oct 2002 A1
20020149714 Anderson et al. Oct 2002 A1
20020154255 Gromatzky et al. Oct 2002 A1
20020164944 Haglid Nov 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020167637 Burke et al. Nov 2002 A1
20030007109 Park Jan 2003 A1
20030020884 Okada et al. Jan 2003 A1
20030043091 Takeuchi et al. Mar 2003 A1
20030104210 Azumi et al. Jun 2003 A1
20030128511 Nagashima et al. Jul 2003 A1
20030214785 Perazzo Nov 2003 A1
20040012722 Alvarez Jan 2004 A1
20040035032 Milliken Feb 2004 A1
20040035558 Todd et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040036834 Ohnishi et al. Feb 2004 A1
20040042174 Tomioka et al. Mar 2004 A1
20040103570 Ruttenberg Jun 2004 A1
20040105159 Saccomanno et al. Jun 2004 A1
20040135482 Fhielemans et al. Jul 2004 A1
20040165139 Anderson et al. Aug 2004 A1
20040223299 Ghosh Nov 2004 A1
20050012039 Faytlin et al. Jan 2005 A1
20050012722 Chon Jan 2005 A1
20050062373 Kim et al. Mar 2005 A1
20050073632 Dunn et al. Apr 2005 A1
20050073639 Pan Apr 2005 A1
20050127796 Olesen et al. Jun 2005 A1
20050134525 Tanghe et al. Jun 2005 A1
20050134526 Willem et al. Jun 2005 A1
20050213950 Yoshimura Sep 2005 A1
20050219841 Ikeda et al. Oct 2005 A1
20050229630 Richter et al. Oct 2005 A1
20050237714 Ebermann Oct 2005 A1
20050253699 Madonia Nov 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050286131 Saxena et al. Dec 2005 A1
20060012958 Tomioka et al. Jan 2006 A1
20060012985 Archie, Jr. et al. Jan 2006 A1
20060018093 Lai et al. Jan 2006 A1
20060034051 Wang et al. Feb 2006 A1
20060056994 Van Lear et al. Mar 2006 A1
20060081367 Chiu Apr 2006 A1
20060082271 Lee et al. Apr 2006 A1
20060092348 Park May 2006 A1
20060125998 Dewa et al. Jun 2006 A1
20060132699 Cho et al. Jun 2006 A1
20060177587 Ishizuka et al. Aug 2006 A1
20060199514 Kimura Sep 2006 A1
20060209266 Utsunomiya Sep 2006 A1
20060260790 Theno et al. Nov 2006 A1
20060262079 Seong et al. Nov 2006 A1
20060266499 Choi et al. Nov 2006 A1
20060269216 Wiemeyer et al. Nov 2006 A1
20060283579 Ghosh et al. Dec 2006 A1
20070013647 Lee et al. Jan 2007 A1
20070019419 Hafuka et al. Jan 2007 A1
20070030879 Hatta Feb 2007 A1
20070046874 Machi et al. Mar 2007 A1
20070047239 Kang et al. Mar 2007 A1
20070065091 Hinata et al. Mar 2007 A1
20070076431 Atarashi et al. Apr 2007 A1
20070081344 Cappaert et al. Apr 2007 A1
20070103863 Kim May 2007 A1
20070103866 Park May 2007 A1
20070115686 Tyberghien May 2007 A1
20070139929 Yoo et al. Jun 2007 A1
20070140671 Yoshimura Jun 2007 A1
20070144704 Bundza et al. Jun 2007 A1
20070151274 Roche et al. Jul 2007 A1
20070151664 Shin Jul 2007 A1
20070171353 Hong Jul 2007 A1
20070176885 Jun Aug 2007 A1
20070206158 Kinoshita et al. Sep 2007 A1
20070211205 Shibata Sep 2007 A1
20070212211 Chiyoda et al. Sep 2007 A1
20070217221 Lee et al. Sep 2007 A1
20070237636 Hsu Oct 2007 A1
20070267174 Kim Nov 2007 A1
20080035315 Han Feb 2008 A1
20080054144 Wohlford Mar 2008 A1
20080055534 Kawano Mar 2008 A1
20080076342 Bryant et al. Mar 2008 A1
20080099193 Aksamit et al. May 2008 A1
20080148609 Ogoreve Jun 2008 A1
20080209934 Richards Sep 2008 A1
20080218446 Yamanaka Sep 2008 A1
20080236005 Isayev et al. Oct 2008 A1
20080267790 Gaudet et al. Oct 2008 A1
20080283234 Sagi et al. Nov 2008 A1
20080285290 Ohashi et al. Nov 2008 A1
20080296134 Hattori et al. Dec 2008 A1
20080310116 O'Connor Dec 2008 A1
20080310158 Harbers et al. Dec 2008 A1
20090009047 Yanagawa et al. Jan 2009 A1
20090009729 Sakai Jan 2009 A1
20090059518 Kakikawa et al. Mar 2009 A1
20090065007 Wilkinson et al. Mar 2009 A1
20090086430 Kang et al. Apr 2009 A1
20090095819 Brown et al. Apr 2009 A1
20090104989 Williams et al. Apr 2009 A1
20090120629 Ashe May 2009 A1
20090122218 Oh et al. May 2009 A1
20090126906 Dunn May 2009 A1
20090126907 Dunn May 2009 A1
20090126914 Dunn May 2009 A1
20090129021 Dunn May 2009 A1
20090135365 Dunn May 2009 A1
20090147170 Oh et al. Jun 2009 A1
20090154096 Iyengar et al. Jun 2009 A1
20090174626 Isoshima et al. Jul 2009 A1
20090231807 Bouissier Sep 2009 A1
20090241437 Steinle et al. Oct 2009 A1
20090244472 Dunn Oct 2009 A1
20090266507 Turnbull et al. Oct 2009 A1
20090279240 Karppanen Nov 2009 A1
20090302727 Vincent et al. Dec 2009 A1
20090306820 Simmons et al. Dec 2009 A1
20090323275 Rehmann et al. Dec 2009 A1
20100060861 Medin Mar 2010 A1
20100079949 Nakamichi et al. Apr 2010 A1
20100079979 Nakamichi et al. Apr 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100171889 Pantel et al. Jul 2010 A1
20100182562 Yoshida et al. Jul 2010 A1
20100220249 Nakamichi et al. Sep 2010 A1
20100226091 Dunn Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100238394 Dunn Sep 2010 A1
20100321887 Kwon et al. Dec 2010 A1
20110001898 Mikubo et al. Jan 2011 A1
20110013114 Dunn et al. Jan 2011 A1
20110019363 Vahlsing et al. Jan 2011 A1
20110032489 Kimoto et al. Feb 2011 A1
20110051071 Nakamichi et al. Mar 2011 A1
20110058326 Idems et al. Mar 2011 A1
20110072697 Miller Mar 2011 A1
20110075361 Nakamichi et al. Mar 2011 A1
20110083460 Thomas et al. Apr 2011 A1
20110083824 Rogers Apr 2011 A1
20110085301 Dunn Apr 2011 A1
20110085302 Nakamichi et al. Apr 2011 A1
20110114384 Sakamoto et al. May 2011 A1
20110116000 Dunn et al. May 2011 A1
20110116231 Dunn et al. May 2011 A1
20110122162 Sato et al. May 2011 A1
20110134356 Swatt et al. Jun 2011 A1
20110141672 Farley, Jr. et al. Jun 2011 A1
20110141724 Erion Jun 2011 A1
20110162831 Lee et al. Jul 2011 A1
20110167845 Lee et al. Jul 2011 A1
20110261523 Dunn et al. Oct 2011 A1
20110297810 Tachibana Dec 2011 A1
20120006523 Masahiro et al. Jan 2012 A1
20120012295 Kakiuchi et al. Jan 2012 A1
20120012300 Dunn et al. Jan 2012 A1
20120014063 Weiss Jan 2012 A1
20120020114 Miyamoto et al. Jan 2012 A1
20120038849 Dunn et al. Feb 2012 A1
20120044217 Okada et al. Feb 2012 A1
20120105790 Hubbard May 2012 A1
20120106081 Hubbard et al. May 2012 A1
20120131936 Yoshida et al. May 2012 A1
20120188481 Kang et al. Jul 2012 A1
20120206687 Dunn et al. Aug 2012 A1
20120223877 Cho Sep 2012 A1
20120224116 Barnes Sep 2012 A1
20120236499 Murayama et al. Sep 2012 A1
20120249402 Kang Oct 2012 A1
20120255704 Nakamichi Oct 2012 A1
20120274876 Cappaert et al. Nov 2012 A1
20120284547 Culbert et al. Nov 2012 A1
20120327600 Dunn Dec 2012 A1
20130170140 Dunn Jul 2013 A1
20130173358 Pinkus Jul 2013 A1
20130176517 Kim et al. Jul 2013 A1
20130201685 Messmore et al. Aug 2013 A1
20130258659 Erion Oct 2013 A1
20130279154 Dunn Oct 2013 A1
20130294039 Chao Nov 2013 A1
20130344794 Shaw et al. Dec 2013 A1
20140044147 Wyatt et al. Feb 2014 A1
20140085564 Hendren et al. Mar 2014 A1
20140111758 Dunn et al. Apr 2014 A1
20140113540 Dunn et al. Apr 2014 A1
20140134767 Ishida et al. May 2014 A1
20140184980 Onoue Jul 2014 A1
20140190240 He et al. Jul 2014 A1
20140268657 Dunn et al. Sep 2014 A1
20140313666 Chin Oct 2014 A1
20140313698 Dunn et al. Oct 2014 A1
20140314395 Dunn et al. Oct 2014 A1
20140334100 Yoon et al. Nov 2014 A1
20140361138 Ramirez et al. Dec 2014 A1
20150009625 Chin et al. Jan 2015 A1
20150009627 Dunn et al. Jan 2015 A1
20150192371 Hancock Jul 2015 A1
20150253611 Yang et al. Sep 2015 A1
20150264826 Dunn et al. Sep 2015 A1
20150319882 Dunn et al. Nov 2015 A1
20150366101 Dunn et al. Dec 2015 A1
20160041423 Dunn Feb 2016 A1
20160044829 Dunn Feb 2016 A1
20160162297 Shao Jun 2016 A1
20160192536 Diaz Jun 2016 A1
20160195254 Dunn et al. Jul 2016 A1
20160198588 DeMars Jul 2016 A1
20160238876 Dunn et al. Aug 2016 A1
20160242329 DeMars Aug 2016 A1
20160242330 Dunn Aug 2016 A1
20160249493 Dunn et al. Aug 2016 A1
20160265759 Na et al. Sep 2016 A1
20160302331 Dunn Oct 2016 A1
20170023823 Dunn et al. Jan 2017 A1
20170068042 Dunn et al. Mar 2017 A1
20170074453 Bowers et al. Mar 2017 A1
20170083043 Bowers et al. Mar 2017 A1
20170083062 Bowers et al. Mar 2017 A1
20170111486 Bowers et al. Apr 2017 A1
20170111520 Bowers et al. Apr 2017 A1
20170111521 Bowers et al. Apr 2017 A1
20170127579 Hubbard May 2017 A1
20170140344 Bowers et al. May 2017 A1
20170147992 Bowers et al. May 2017 A1
20170163519 Bowers et al. Jun 2017 A1
20170175411 Bowers et al. Jun 2017 A1
20170188490 Dunn et al. Jun 2017 A1
20170231112 Dunn et al. Aug 2017 A1
20170245400 Dunn et al. Aug 2017 A1
20170257978 Diaz Sep 2017 A1
20170332523 DeMars Nov 2017 A1
20170345346 Hong et al. Nov 2017 A1
20180042134 Dunn et al. Feb 2018 A1
20180088368 Notoshi et al. Mar 2018 A1
20180088398 Lee et al. Mar 2018 A1
20180116073 Dunn Apr 2018 A1
20180314103 Dunn et al. Nov 2018 A1
20180315356 Dunn et al. Nov 2018 A1
20180317330 Dunn et al. Nov 2018 A1
20180317350 Dunn et al. Nov 2018 A1
20180364519 Dunn et al. Dec 2018 A1
20190021189 Kim et al. Jan 2019 A1
20190037738 Dunn et al. Jan 2019 A1
20190089176 Dunn et al. Mar 2019 A1
20190133002 Dunn et al. May 2019 A1
20190208674 Demars Jul 2019 A1
20190239365 Dunn et al. Aug 2019 A1
20190289754 Hubbard Sep 2019 A1
20190327865 Dunn et al. Oct 2019 A1
20200154597 Dunn et al. May 2020 A1
20200163235 Dunn May 2020 A1
20200205303 Dunn et al. Jun 2020 A1
20200253095 Dunn et al. Aug 2020 A1
20200275585 Dunn Aug 2020 A1
20200288585 Dunn et al. Sep 2020 A1
20200319676 Dunn Oct 2020 A1
20200352049 Dunn et al. Nov 2020 A1
20200367391 Dunn Nov 2020 A1
20200387194 Dunn Dec 2020 A1
20200390009 Whitehead et al. Dec 2020 A1
20210007241 Diaz Jan 2021 A1
20210022273 Hubbard Jan 2021 A1
20210168949 Dunn et al. Jun 2021 A1
20210243906 Dunn Aug 2021 A1
20210243914 Dunn Aug 2021 A1
Foreign Referenced Citations (168)
Number Date Country
2011248190 May 2011 AU
2014287438 Jan 2018 AU
2015253128 Mar 2018 AU
2017216500 Oct 2018 AU
2017216500 Jan 2019 AU
2015229457 Mar 2019 AU
2016220308 Mar 2019 AU
2017228430 Mar 2020 AU
2018258497 Jan 2021 AU
2018257648 Feb 2021 AU
PI0820231-1 Feb 2019 BR
2705814 Feb 2018 CA
2947524 Apr 2018 CA
2915261 Aug 2018 CA
27982777 Jun 2019 CA
2809019 Sep 2019 CA
2888494 Sep 2019 CA
2976116 Nov 2020 CA
2702363 May 2005 CN
201228893 Apr 2009 CN
202838830 Mar 2013 CN
106304788 Jan 2017 CN
107251671 Oct 2017 CN
108700739 Oct 2018 CN
107251671 Aug 2019 CN
1408476 Apr 2004 EP
1647766 Apr 2006 EP
1722559 Nov 2006 EP
1762892 Mar 2007 EP
1951020 Jul 2008 EP
2225603 Sep 2010 EP
2370987 Oct 2011 EP
2603831 Jun 2013 EP
2801888 Nov 2014 EP
2909829 Aug 2015 EP
3020260 May 2016 EP
3040766 Jul 2016 EP
3117693 Jan 2017 EP
3259968 Dec 2017 EP
3423886 Jan 2019 EP
3468321 Apr 2019 EP
3138372 May 2019 EP
3117693 Aug 2019 EP
2567283 Oct 2019 EP
2909829 Feb 2020 EP
3615978 Mar 2020 EP
3616481 Mar 2020 EP
3624574 Mar 2020 EP
3468321 Apr 2021 EP
2402205 Dec 2004 GB
402062015 Mar 1990 JP
402307080 Dec 1990 JP
3153212 Jul 1991 JP
H06-2337 Jan 1994 JP
6082745 Mar 1994 JP
H8-55567 Feb 1996 JP
8115788 May 1996 JP
8194437 Jul 1996 JP
H08-305301 Nov 1996 JP
8339034 Dec 1996 JP
H9-160512 Jun 1997 JP
H09246766 Sep 1997 JP
11160727 Jun 1999 JP
H11296094 Oct 1999 JP
2000-10501 Jan 2000 JP
2001209126 Aug 2001 JP
2002-6282 Jan 2002 JP
2002158475 May 2002 JP
2003-76286 Mar 2003 JP
2004053749 Feb 2004 JP
2004-199675 Jul 2004 JP
2004286940 Oct 2004 JP
2005017556 Jan 2005 JP
2000131682 May 2005 JP
2005134849 May 2005 JP
2005265922 Sep 2005 JP
2006-32890 Feb 2006 JP
2006513577 Apr 2006 JP
2007322718 May 2006 JP
2006148047 Jun 2006 JP
2006163217 Jun 2006 JP
2006-176112 Jul 2006 JP
2007003638 Jan 2007 JP
2007-293105 Nov 2007 JP
09307257 Nov 2007 JP
2008010361 Jan 2008 JP
2008292743 Dec 2008 JP
2010024624 Feb 2010 JP
2010-102227 May 2010 JP
2010-282109 Dec 2010 JP
2011-14593 Jan 2011 JP
2011-503663 Jan 2011 JP
2011-75819 Apr 2011 JP
2012-118130 Jun 2012 JP
2012-133254 Jul 2012 JP
2013-537721 Oct 2013 JP
2014-225595 Dec 2014 JP
2017518526 Jul 2017 JP
2018-511838 Apr 2018 JP
6305564 Apr 2018 JP
2019-512721 May 2019 JP
6526245 May 2019 JP
6688402 Apr 2020 JP
6824440 Jan 2021 JP
6858276 Mar 2021 JP
20000000118 Jan 2000 KR
20000047899 Jul 2000 KR
10-2067751 Jan 2002 KR
1020040067701 Jul 2004 KR
200366674 Nov 2004 KR
20050033986 Apr 2005 KR
200401354 Nov 2005 KR
20060016469 Feb 2006 KR
10-0563049 Mar 2006 KR
20060054742 May 2006 KR
10-2006-0070176 Jun 2006 KR
100666961 Jan 2007 KR
1020070070675 Apr 2007 KR
1020070048294 Aug 2007 KR
10-2013-0126034 Nov 2013 KR
101764381 Jul 2017 KR
10-1847151 Apr 2018 KR
10-1853885 Apr 2018 KR
10-1868077 Jun 2018 KR
1 0-1885884 Jul 2018 KR
10-1894027 Aug 2018 KR
10-1904363 Sep 2018 KR
10-1958375 Mar 2019 KR
10-2010515 Aug 2019 KR
10-2063885 Jan 2020 KR
10-2104342 Apr 2020 KR
10-2109072 May 2020 KR
10-2165778 Oct 2020 KR
10-2262912 Jun 2021 KR
10-2267374 Jun 2021 KR
2513043 Apr 2014 RU
WO2005079129 Aug 2005 WO
WO2007116117 Oct 2007 WO
WO2007116116 Oct 2007 WO
WO2008050660 May 2008 WO
WO2008102050 Aug 2008 WO
WO2009047390 Apr 2009 WO
WO2009065125 May 2009 WO
WO2009065125 May 2009 WO
WO2009135308 Nov 2009 WO
WO2010007821 Feb 2010 WO
WO2010080624 Jul 2010 WO
WO2011069084 Jun 2011 WO
WO2011072217 Jun 2011 WO
WO2011140179 Nov 2011 WO
WO2011150078 Dec 2011 WO
WO2012021573 Feb 2012 WO
WO2012024426 Feb 2012 WO
201 3182733 Dec 2013 WO
WO2014062815 Apr 2014 WO
WO2014149773 Sep 2014 WO
WO2014150036 Sep 2014 WO
201 5138609 Sep 2015 WO
WO2015168375 Nov 2015 WO
WO2016102980 Jun 2016 WO
WO2016102982 Jun 2016 WO
WO2016127613 Aug 2016 WO
WO2016133852 Aug 2016 WO
WO2017152166 Sep 2017 WO
2018200260 Nov 2018 WO
2018200905 Nov 2018 WO
WO2020081687 Apr 2020 WO
WO2020205305 Oct 2020 WO
Non-Patent Literature Citations (34)
Entry
Mentley, David E., State of Flat-Panel Display Technology and Future Trends, Proceedings of the IEEE, Apr. 2002, vol. 90, No. 4, pp. 453-459.
Rohsenow, Warren M., Handbook of Heat Transfer, Third Edition, 1998, select chapters, 112 pages, McGraw-Hill.
The American Heritage College Dictionary, Third Edition, 1993, excerpt, 3 pages, Houghton Mifflin Company.
Civiq Smartscapes LLC. V Manufacturing Resources International, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,854,572 including Declaration of Greg Blonder in Support of Petition, Curriculum Vitae of Greg Blonder and Prosecution History of U.S. Pat. No. 8,854,572, Petition filed Mar. 14, 2018, 427 pages.
Civiq Smartscapes LLC. V Manufacturing Resources International, Inc., Defendant's Amended Answer and Countercliams to Plaintiffs First Amended Complaint, Filed Apr. 24, 2018, 240 pages.
Itsenclosures, Product Catalog, 2009, 48 pages.
Itsenclosures, Standard Product Data Sheet, 2011, 18 pages.
SUNBRITETV, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page.
SUNBRITETV, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages.
Itsenclosures, Viewstation, 2017, 16 pages.
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages.
Federman, Cooling Flat Panel Displays, 2011, 4 pages.
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page.
Vertigo Digital Displays, Innovation on Display FlexVu Totem Brochure, 2014, 6 pages.
Vertigo Digital Displays, FlexVu Totem Shelter, 2017, 2 pages.
Vertigo Digital Displays, All Products Catalogue, 2017,14 pages.
ADNATION,Turn Key Advertising Technology Solutions, May 23, 2017, 4 pages.
CIVIQ Smartscapes, FlexVue Ferro 55P/55L, Mar. 16, 2017, 4 pages.
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages.
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages.
CIVIQ, Invalidity Claim Charts, Appendix A-Appendix D, Jan. 24, 2018, 51 pages.
CIVIQ, Invalidity Contentions, Jan. 24, 2018, 51 pages.
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages.
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages.
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages.
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages.
Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages.
CIVIQ, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages.
CIVIQ, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages.
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages.
CIVIQ Smartscapes, LLC V. Manufacturing Resources International, Inc., Memorandum Opinion re claim construction, Sep. 27, 2018, 16 pages.
CIVIQ Smartscapes, LLC V. Manufacturing Resources International, Inc., Claim Construction Order, Oct. 3, 2018, 2 pages.
Anandan, Munismay, Progress of LED backlights for LCDs, Journal of the SID, 2008, pp. 287-310, 16/2.
Melford Technologies, Part 2, video online at https://m.youtube.com/watch?v=znlyHWozwDA, Oct. 21, 2019, 1 page.
Related Publications (1)
Number Date Country
20230059819 A1 Feb 2023 US