This application claims the priority, under 35 U.S.C. § 119, of German application DE 10 2017 008 292.8, filed Sep. 5, 2017; the prior application is herewith incorporated by reference in its entirety.
The present invention relates to a fan wheel, in particular with forward-swept blades, for a radiator fan module, in particular an electrically operated radiator fan module, in particular for motor vehicles.
The cooling system of an internal combustion engine, in particular of a motor vehicle, mainly discharges the heat that is given off to the walls of combustion chambers and cylinders as a result of the combustion process not proceeding ideally. Because too-high temperatures would damage the engine (tearing off the lubricating film, burning the valves, etc.), the internal combustion engine must be actively cooled.
Modern internal combustion engines, particularly four-stroke engines in motor vehicles, are with few exceptions liquid-cooled, typically using a mixture of water, antifreeze and corrosion inhibitor as a cooling liquid.
The cooling liquid is pumped through the engine (cylinder head and engine block) via hoses, pipes and/or channels as well as, optionally, through highly thermally stressed components of the engine, such as the exhaust gas turbocharger, alternator or exhaust gas recirculation cooler. In the process, the cooling liquid absorbs heat energy and removes heat energy from the above-mentioned components. The heated cooling liquid then flows on to a radiator. This radiator—formerly often made of brass, today chiefly made of aluminum—is usually mounted on the front of the motor vehicle, where an air stream absorbs heat energy from the coolant and cools it before the coolant flows back to the engine; in this way, the coolant flows in a closed circuit.
To drive air through the radiator, a radiator fan module is furnished either before the radiator in the flow direction (i.e. upstream) or after the radiator (i.e. downstream), and may be driven mechanically via a belt drive or electrically via an electric motor. The following statements refer to an electrically driven radiator fan module.
A radiator fan module conventionally consists of a fan cowl, which has a fan wheel recess, and a fan wheel, which is rotatably held in the fan wheel recess.
The geometry of the fan wheel has a substantial effect on both the volume of air supplied and the acoustic properties of the radiator fan module.
The blades of conventional fan wheels (see
The objective of the present invention is to provide an advantageous fan wheel that has particularly advantageous air supply properties and/or acoustic properties.
This objective is achieved, according to the invention, by a fan wheel according to the main fan wheel claim and a radiator fan module according to the radiator fan module claim. Preferred developments of the fan wheel and the radiator fan module are the subject matter of the dependent claims and the following specification.
According to the invention, the objective is achieved by a fan wheel, in particular for a motor vehicle, having: a hub cup that in particular is rotationally symmetrical around an axis of rotation; and a plurality of blades which are arranged on the hub cup and extend radially outwardly from an outer wall of the hub cup that is in particular at least substantially cylindrical. Each of the blades has a leading edge and a trailing edge. Wherein for at least one blade, in particular some of the blades, and in particular all the blades, the following applies: a reference line is defined by a first point on an axis of rotation of the fan wheel, a radial extent passing through the first point and perpendicular to the axis of rotation, and a second point that bisects an arcuate edge into two equal sections at the transition from the hub cup to the blade. A reference plane is defined by a line displaced parallel to the axis of rotation and a line displaced parallel to the reference line, the displacement being such that, viewed in the direction of rotation of the fan wheel, it is located entirely behind the blade. An orthogonal projection of the leading edge of the blade and an orthogonal projection of the trailing edge of the blade are mapped in the reference plane. A z-axis is defined in the reference plane by an orthogonal projection of the axis of rotation in the reference plane, which is displaced parallel outward in the radial direction in the reference plane from the orthogonal projection of the axis of rotation around an outer radius of the hub cup. In the reference plane a y-axis is defined by an orthogonal projection of the radial extent in the reference plane; and a relative unit radius t is plotted on the y-axis, and is defined as follows:
wherein Ri is an outer radius of the hub cup, which corresponds in particular at least substantially to an inner radius of the blade; Ra is an outer radius of the blade; and r is the distance between the axis of rotation and the particularly cylindrical sectional plane under consideration, which is perpendicular at distance r from the axis of rotation on the associated reference line, wherein r∈[Ri;Ra].
An axial unit depth z*(t) of the blade is plotted on the z-axis, and is defined as follows:
where: zVK(t) represents the z-coordinate of the orthogonal projection of the leading edge of the particularly cylindrical sectional plane running through t; and zHK(t) represents the z-coordinate of the orthogonal projection of the trailing edge of the particularly cylindrical sectional plane running through t; wherein the progression of the axial unit depth z*(t) has an aperiodically wave-like shape.
This is particularly advantageous according to an embodiment of the present invention, because it makes possible a favorable air volume flow. Comparative measurements, which are explained in detail in the description of the drawings, have shown that a fan wheel according to the present invention may achieve, and in particular does achieve, a higher air volume flow than an otherwise identically constructed fan having a flat or curved trailing edge. In other words: According to the present invention, the same air volume flow may be generated with less power or a slower running fan wheel. Alternatively, a higher air volume flow may be achieved at the same power.
A “fan wheel” in the meaning of the present invention is in particular a rotationally symmetric component with a hub, in particular a hub cup, that connects the fan wheel to a motor, in particular via a shaft protruding from the motor in such a way that the torque the motor generates is at least substantially completely transferred to the fan wheel. In addition, the fan wheel has a plurality of blades, which are furnished, and in particular set up, to generate an air volume flow as soon as the fan wheel is put into rotational movement. The blades are preferably inclined relative to the axis of rotation in an angular range from −90° to +90°.
A “hub cup” in the meaning of the present invention is in particular a central part of the fan wheel, and is arranged at least substantially in the center of the fan, and provides a connection to a drive, in particular a motor, in particular an electric motor, and at least partially covers this drive, in particular motor, in particular electric motor; and which, like a conventional cup, contains an at least substantially flat base surface and an adjoining cylindrical surface. In particular, the blades are arranged on, and in particular integrally molded to, this cylindrical outer wall.
A “blade” in the meaning of the present invention is a flat body inclined relative to a plane to which the axis of rotation is perpendicular, which is arranged on the hub cup and is furnished, and in particular set up, to generate an air volume flow as soon as the fan wheel is put into a rotational motion. In the meaning of the present invention, “blades” also refers, in particular, to vanes or rotor blades.
A “leading edge” of the blade in the meaning of the present invention is in particular the edge that goes first in the direction of rotation.
A “trailing edge” of a blade in the meaning of the present invention is in particular the edge of the blade that lags behind, when viewed in the direction of rotation.
An “orthogonal projection” in the meaning of the present invention is a mapping of a point onto a plane, so that the line connecting the point and its mapping forms a right angle with this plane. The mapping then has the shortest distance of all points of the plane to the starting point. The orthogonal projection is thus a special case of a parallel projection, in which the direction of projection is the same as the normal direction to the plane.
An “axial unit depth” in the sense of the present invention is the height of the blade when viewing the blade perpendicular to the axis of rotation. This is particularly advantageous because in this way the absolute dimensions of the blade are normalized, which leads to better comparability between the different configurations of a fan wheel.
A “relative unit radius” in the meaning of the present invention describes a point or a plane, in particular a cylindrical plane, at a defined distance from the axis of rotation in a normalized manner, which improves comparability between different fan wheels.
“Aperiodic” in the meaning of the present invention refers in particular to a shape that extends asymmetrically over the relative unit radius; put differently, there is no axis of symmetry that bisects the function of the axial unit depth into two identical sub-functions. In other words: The axial unit depth is not a function with values that repeat at regular intervals.
A “wave-like” shape in the meaning of the present invention is characterized in particular by the fact that the second derivative of the underlying function is always continuous.
In other words, the basic idea of the present invention is to give the trailing edge an aperiodically wave-like shape, in particular with the leading edge being flat or curved, resulting in a unique blade configuration, as described with regard to the axial depth. This shape according to the invention is the key to increased air performance and the above-described performance savings.
According to an embodiment of the present invention, the orthogonal projection of the leading edge is flat or curved. This is particularly advantageous because an advantageous air volume flow may be generated as a result of the contrast between a flat or curved leading edge and aperiodically wave-shaped trailing edge. This is particularly the case if the orthogonal projection of the leading edge has no inflection points.
According to an additional embodiment of the present invention, the fan wheel has one or a plurality of forward-swept blades viewed in the direction of rotation. This is particularly important because there are fundamentally different aerodynamic conditions for fan wheels with forward-swept and backward-swept blades, which have, among other things, a significant influence on the air volume flow that is supplied. “Forward-swept” in the meaning of the present invention means in particular that the tip of the blade with outer radius Ra goes first, when viewed in the direction of rotation of the center of the blade.
According to a preferred embodiment of the present invention, the fan wheel has an at least substantially circular outer ring, which connects the tips of the blades together. This is particularly advantageous because in this way an increased mechanical strength of the fan wheel is achieved and a defined, at least substantially constant, gap is provided between a cowl ring and the outer ring, which in turn leads to advantageous aerodynamic and/or acoustic effects.
According to an embodiment of the present invention, the progression of the axial unit depth z*(t) has a global minimum in the range of 65% to 90%, in particular 70% to 85%, in particular 75% to 80%, of the relative unit radius of the blade. This is particularly advantageous because extensive experimental studies have shown that a global minimum in the specified range makes the primary contribution to the increase in the air volume flow.
According to an additional embodiment of the present invention, the progression of the axial unit depth z*(t) in the y-direction after the global minimum has no, or at most one, high point. This is particularly advantageous, because in this way the fan wheel runs at least substantially linearly, inasmuch as extensive experiments have shown that additional waves after the global minimum do not achieve any further significant power savings.
According to an additional embodiment of the present invention, the progression of the axial unit depth z*(t) in the range from 0% to 50%, in particular from 0% to 40%, in particular from 0% to 30%, of the relative unit radius of the blade has at least one substantially continuously increasing or continuously decreasing progression. This is particularly advantageous because extensive experiments have shown that there are embodiments in which waves in the abovementioned range do not have an increased influence on power savings, and may therefore be omitted at least partially in order to simplify the blade geometry.
According to an additional embodiment of the present invention, the progression of the axial unit depth z*(t), as a function of the relative unit radius t(r), satisfies the following condition:
where:
t0∈[0;0.5], in particular t0∈[0;0.1], in particular t0∈[0;0.25]
N∈[1;8], in particular N∈[2;5], in particular N∈[2;4]
a∈[−1.5;1.5], in particular a∈[−1.0;1.0], in particular a∈[0.5;0.5],
A1∈[2;10], in particular A1∈[5;10], in particular A∈[8;10]
A2∈[−10;10], in particular A2∈[−5;5], in particular A2∈[−2;2]
A3∈[−10;10], in particular A3∈[−8;8], in particular A3∈[5;5]; and
A4∈[5;50], in particular A4∈[5;40], in particular A4∈[10;25].
t0 describes an offset of the relative unit radius for setting the vertex at the hub cup, N describes the number of oscillations over the axial unit radius, a describes an oscillation coefficient for scaling the wavelength and setting the position of the global minimum, A1 describes a quadratic polynomial coefficient, A2 describes a linear polynomial coefficient, A3 describes an axial threading coefficient, i.e. for adjusting the linear progression of the trailing edge from the hub cup to the blade tip or outer ring, and A4 describes a relative base deflection (“start” deflection) of the trailing edge of the hub cup. The above function describes the aperiodically wave-like shape of the axial unit depth. By using the specified parameters, it is possible to adapt the axial unit depth to external conditions in the course of fan wheel construction, in order thus to achieve an advantageous power savings or an equivalent increase in air volume flow.
According to an additional embodiment of the present invention, the entire length of the blade is divided into the following sections:
Section I from 0% to 65% of the entire length of the blade;
Section II from 65% to 77.5% of the entire length of the blade; and
Section III from 77.5% to 100% of the entire length of the blade,
wherein the total axial unit depth z*(t), plotted over the entire length as a function of the relative unit radius t(r), is bounded above by an upper limit function GO, defined as follows:
Section I GO extends from an axial unit depth z*(t) of 0.175 linearly to an axial unit depth z*(t) of 0.175;
Section II GO extends from an axial unit depth z*(t) of 0.175 linearly to an axial unit depth z*(t) of 0.13; and
Section III GO extends from an axial unit depth z*(t) of 0.13 linearly to an axial unit depth z*(t) of 0.23.
According to an additional embodiment of the present invention, the entire length of the blade is divided into the following sections:
Section I from 0% to 65% of the entire length of the blade;
Section II from 65% to 77.5% of the entire length of the blade; and
Section III from 77.5% to 100% of the entire length of the blade,
wherein the axial unit depth z*(t) as a function of the relative unit radius t(r), plotted over the entire length, is bounded below by a lower limit function Gu, defined as follows:
Section I GU extends from an axial unit depth z*(t) of 0.05 linearly to an axial unit depth z*(t) of 0.05;
Section II GU extends from an axial unit depth z*(t) of 0.05 linearly to an axial unit depth z*(t) of 0.02; and
Section III GU extends from an axial unit depth z*(t) of 0.02 linearly to an axial unit depth z*(t) of 0.10.
According to an additional embodiment of the present invention, the axial unit depth z*(t) over the entire length of the blade is always less than the associated value of the upper limit function GO and the axial unit depth z*(t) over the entire length of the blade is always greater than the associated value of the lower limit function GU.
This is particularly advantageous because in this way the global minimum in the (broadly considered) transition region from section II to section III is defined in addition to its position also in its advantageous value range, as has been found in extensive comparative studies.
The fan wheel according to the invention, according to one of the embodiments described herein, is particularly contemplated for use in conjunction with a fan cowl with rear struts, that is, the struts are behind the fan when viewed in the main flow direction.
A further aspect of the present invention relates to a radiator fan module, in particular for a motor vehicle, having a fan cowl, a fan wheel recess formed in the fan cowl, wherein the fan wheel recess is bounded by a cowl ring, a motor holder which is arranged inside the fan wheel recess and which is mechanically connected with the fan cowl via struts, a motor, in particular an electric motor, which is at least partially held in the motor holder, and a fan wheel, which is arranged in the fan wheel recess and is rotationally driven by the motor, wherein the fan wheel is formed according to an embodiment of the present invention.
A “radiator fan module” in the meaning of the present invention is in particular an assembly which, when viewed in the flow direction, is arranged before or after a radiator of a vehicle and which is furnished, and in particular adapted, to generate an air volume flow which passes through or around the radiator, wherein the air volume flow receives thermal energy from the radiator.
A “fan cowl” in the meaning of the present invention is in particular a frame in which the fan wheel is held, and in turn is preferably arranged, and in particular fastened, on or near a radiator. A fan cowl according to the present invention preferably has a plastic material, in particular a plastic compound; in particular, the fan cowl is formed therefrom. Additionally and/or alternatively, the fan cowl has a metal material, for example iron, steel, aluminum, magnesium or the like, and in particular is at least partially, in particular at least substantially, in particular completely, formed therefrom. According to one embodiment, a fan cowl may also have more than one fan wheel recess, one motor holder, one motor and one fan wheel; in particular, the present invention is suitable for use in radiator fan modules with two or more, in particular two, fan wheels. According to one embodiment, the fan cowl additionally has at least one closable opening, in particular at least one flap, in particular a plurality of flaps. This is particularly advantageous because further air-guiding properties may be realized in this way.
A “fan wheel recess” in the meaning of the present invention is in particular a material recess within the fan cowl. In the fan wheel recess according to an embodiment of the present invention, struts extend which mechanically, in particular mechanically and electrically and/or electronically, connect a motor holder that is also arranged in the fan wheel recess with the fan cowl. According to the present invention, the fan wheel recess is bounded by a cowl ring.
A “cowl ring” within the meaning of the present invention limits the fan wheel recess to a plane perpendicular to the axis of rotation of the fan wheel, wherein the plane is at least substantially identical, in particular, with the extension direction of the fan cowl. The cowl ring may be formed by an edge of the fan wheel recess and/or may have a cylinder extending in the axial direction, which is preferably formed integrally with the fan cowl.
A “motor holder” within the meaning of the present invention is in particular a device for mechanically fastening the motor to the fan cowl, in particular for providing the torque acting opposite the fan wheel. According to one embodiment, the motor holder is an at least substantially ring-shaped structure in which the motor is held. This is particularly advantageous because in this way an advantageous cooling air flow is not affected by the motor.
“Struts” in the meaning of the present invention are in particular beam-shaped or sickle-shaped structures which provide a mechanical connection between the motor holder and the fan cowl. By way of example, the struts may have a drop-shaped cross-section in order to achieve advantageous aerodynamic and/or acoustic effects.
A “motor” in the meaning of the present invention is in particular a machine that performs mechanical work by converting a form of energy such as thermal/chemical or electrical energy, into kinetic energy, in particular torque. This is particularly advantageous because in this way the fan cowl may be operated at least substantially independently, except for the supply of energy, that is, without an external supply of kinetic energy, such as via a fan belt or timing belt.
An “electric motor” in the meaning of the present invention is an electromechanical converter (electric machine), which converts electrical power into mechanical power, in particular into torque. The term “electric motor” in the meaning of the present invention contains, but is not limited to, direct current motors, alternating current motors and three-phase motors or brush and brushless electric motors, or internal rotor and external rotor motors. This is particularly advantageous because electrical energy is an energy form, by means of which the required torque is provided to drive the fan wheel, that is easy to transfer compared to mechanical or chemical energy.
To avoid repetition, for the advantages of a radiator fan module designed in such a way, reference is made to the above statements.
According to one embodiment of the present invention, the struts of the radiator fan module are arranged behind the fan wheel when viewed in the flow direction. This is particularly relevant, because front and rear struts lead to substantially different aerodynamic conditions and the fan wheel described herein may be used particularly advantageously in rear struts, as extensive experiments have shown.
A further aspect of the present invention relates to the use of a fan wheel of the type described herein, or a radiator fan module of the type described herein, in a motor vehicle. This is particularly important, because the type of fan wheel described herein has a particularly advantageous effect with the external conditions at the installation site.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a fan wheel, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly to
The fan wheel 1, according to
With regard to
As may be seen in
Compared to embodiments of the fan wheel 1 according to the prior art (see
As regards the perspective of the sectional view, reference is made to the following statements regarding
In the following will be described the viewing plane for describing the leading edge VK and trailing edge HK or the resulting axial unit depth z*(t). The fan wheel shown in
Starting from the axis of rotation R, a reference line G_REF is defined by a first point P1 on the axis of rotation R of the fan wheel 1, a radial extent E is defined by the first point P1, perpendicular to the axis of rotation R, and a second point P2, which bisects an arcuate edge at the transition from the hub cup 10 to the blade 30 into two equal sections. In other words: The radius is determined that passes through the point P2. Point P2 represents the midpoint of the transition edge from hub cup to blade, in particular the edge of the blade 30 facing the bottom of the cup. Another at least substantially identical definition of P2 may be derived via an angle: Two auxiliary radii are required, the first auxiliary radius passing through P1 and the foremost point on the transitional edge between the cylindrical outer wall and the blade, and a second auxiliary radius passing through the rearmost point on the transitional edge from the hub cup to the blade, and the line is constructed that bisects the angle enclosed between the two auxiliary radii. The point at which the aforementioned bisector intersects the cylindrical outer wall 12, in particular at an outer side thereof, is P2. Starting from G_REF, a reference plane E_REF is defined by a line displaced parallel to the axis of rotation and a line displaced parallel to the reference line G_REF, the displacement being such that, viewed in the direction of rotation D of the fan wheel 1, it is located entirely behind the blade 30. On the reference plane E_REF are mapped an orthogonal projection of the leading edge VK of the blade 10 and an orthogonal projection of the trailing edge HK of the blade 10. The viewing direction B shows the view in
A coordinate system consisting of a z-axis and y-axis is spanned in the reference plane. This is significant for the description of the leading and trailing edges. The z-axis is defined by an orthogonal projection of the axis of rotation R in the reference plane E_REF, which in a second step is displaced in parallel outward in the reference plane E_REF in the radial direction from the orthogonal projection of the axis of rotation R about an outer radius Ri of the hub cup 10. In other words: The z-axis is unchanged in orientation, but is displaced in parallel in two steps, i.e. a first time through orthogonal projection onto the reference plane E_REF and then through displacement by Ri in the reference plane E_REF. This means that the z-axis passes through the orthogonal projection of P2 onto E_REF. The y-axis is defined through an orthogonal projection of the radial extent E in the reference plane E_REF. The origin of this y-z coordinate system is defined by the intersection of the two axes.
A relative unit radius t(r) is plotted on the y-axis, and is defined as follows:
wherein
Ri is an outer radius of the hub cup 10, which corresponds in particular at least substantially to an inner radius of the blade 30;
Ra is an outer radius of the blade 30; and
r is the distance between the axis of rotation R and the sectional plane S under consideration, which is perpendicular at the distance r perpendicular from the axis of rotation R along the associated reference line G_REF, where r∈[Ri;Ra].
The horizontal axis corresponds to the y-axis described above, and the vertical axis corresponds to the z-axis described above. The relative unit radius t(r) is plotted on the horizontal axis.
The axial unit depth z*(t) of the blade is plotted on the vertical axis. The axial unit depth z*(t) is given by
wherein
zVK(t) is the z-coordinate of the orthogonal projection of the leading edge VK in the sectional plane S passing through t; and
zHK(t) is the z-coordinate of the orthogonal projection of the trailing edge HK in the sectional plane S passing through t.
The progression of the axial unit depth z*(t) shown in this way has an aperiodically wave-like shape. It will be apparent that the axial unit depth z*(t), analogously to the orthogonal projection of the trailing edge HK, has a global minimum in the range from 65% to 90%, in particular from 70% to 85%, in particular 75% to 80%, of the relative unit radius t(r) of the blade.
As is also apparent from the progression of the axial unit depth z*(t) of the exemplary embodiment of
As also shown in
where:
t0∈[0;0.5]
N∈[1;8]
a∈[−1,5;1,5]
A1∈[2;10]
A2∈[−10;10]
A3∈[−10;10] and
A4∈[5;50].
The axial unit depth shown in
t0=0
N=3
a=0,4
A1=10
A2=−2
A3=−5
A4=16
Shown are:
a pressure coefficient ψ, which is a characteristic for a total pressure difference:
a coefficient of performance λ, which is a characteristic for an input power;
and an efficiency n over a volume coefficient φ that quantifies a volumetric flow.
For the input power, here the shaft power of the electric motor is used; corresponding losses (heat, friction, etc.) of the electric motor are taken into account and represented in the overall efficiency n.
As is apparent, with almost the same performance (similar coefficient of performance) a higher pressure coefficient (=>total pressure difference) is achieved, yielding a significant increase in efficiency in the relevant volume coefficient range.
The radiator fan module 100 has a fan cowl 2; a fan wheel recess 40 is formed in the fan cowl 2, and is bounded by a cowl ring 42. A motor holder (hidden by the hub cup 10) is arranged within the fan wheel recess 40 and is mechanically connected with the fan cowl 2 via struts 44. A motor (likewise hidden by the hub cup 10), in particular an electric motor, is at least partially held in the motor holder. A fan wheel 1 is arranged in the fan wheel recess 40 and is driven rotationally by the motor. The fan wheel 1 corresponds to an embodiment of a fan wheel according to the present invention. The detailed configuration of the fan wheel has been described above. According to the embodiment of
Although exemplary embodiments have been explained in the foregoing specification, it should be noted that numerous modifications are possible. In particular, such a configuration of the fan cowl according to the invention is also suitable for dissipating waste heat from components of a purely electrically powered vehicle. It should additionally be noted that the exemplary embodiments are merely examples that are not intended to limit the scope, applications and structure in any way. Rather, the preceding description gives the person of ordinary skill in the art a guide for implementing at least one exemplary embodiment, and various changes, in particular with regard to the function and arrangement of the components described, may be made without departing from the scope of the patent, as set forth in the Claims and equivalent feature combinations.
The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention:
Number | Date | Country | Kind |
---|---|---|---|
10 2017 008 292.8 | Sep 2017 | DE | national |