Fan with adjustable guide vanes

Information

  • Patent Grant
  • 6394766
  • Patent Number
    6,394,766
  • Date Filed
    Monday, November 1, 1999
    24 years ago
  • Date Issued
    Tuesday, May 28, 2002
    22 years ago
Abstract
The present invention is a fan with adjustable vanes for controlling the width of the wind generated by the fan. The vanes are adjustable to any angle. Preferably, the vanes are set at 10° with the generated wind for a narrow, focused beam, and to 45° with the generated wind for a diffuse, flood beam. The vanes are adjustable from a dial located on the outside of the fan housing. A motor drives the fan. The motor is controlled by a rotating dial on the outside of the fan housing. The rotating dial allows for adjusting the motor speed from 0 to 100%. Pressing a “burst” button located on the outside of the fan housing instantly provides 100% motor speed. The fan motor runs at full speed for as long as the “burst” button is depressed. A mounting yoke is pivotally connected to opposite sides of the fan housing, allowing the fan to be set at various angles.
Description




BACKGROUND OF THE INVENTION




Currently, fans used to generate wind are large and rather expensive, particularly when used in the special effects industry. A need exists for a more compact, efficient and inexpensive fan that still has a high wind output. A need also exists for a fan that allows a user to control the wind that is generated by the fan.




SUMMARY OF THE INVENTION




The present invention is a fan with adjustable vanes for controlling the width of the wind generated by the fan. The vanes are adjustable to any angle. Preferably, the vanes are set at 10° with the generated wind for a narrow, focused beam, and to 45° with the generated wind for a diffuse, flood beam. When the vanes are set at 10°, the focused beam has a 3.5 foot diameter at ten feet. The velocity of the focused beam (vanes at 10°) at ten feet is 20 mph. When the vanes are set at 45°, the flood beam has an eight foot diameter at ten feet. Using different sized motors in the fan allows for various sized beams to be obtained. The vanes are adjustable from a dial located on the fan housing.




The motor is controlled by a rotating dial on the outside of the fan housing. The rotating dial allows for adjusting the motor speed from 0 to 100%. Pressing a “burst” button located on the outside of the fan housing instantly provides 100% motor speed. The fan motor runs at full speed for as long as the “burst” button is depressed.




A mounting yoke is pivotally connected to opposite sides of the fan housing, allowing the fan to be set at various angles. The fan may also be inverted during transportation so that the fan is protected by the yoke.




These and further and other objects and features of the invention are apparent in the disclosure, which includes the above and ongoing written specification, with the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of the fan device.





FIG. 2

is a front view of the fan device.





FIG. 3

is a top view of the fan device with the top grill removed.





FIG. 4

is a cross-section of the fan device of FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIGS. 1

,


2


and


4


, the present invention is a fan


1


with adjustable vanes


3


for controlling the width of the wind generated by the fan. The vanes


3


are adjustable to any angle. Preferably, the vanes are set at 10° with the generated wind for a narrow, focused beam, and to 45° with the generated wind for a diffuse, flood beam. When the vanes


3


are set at 10°, the focused beam has a 3.5 foot diameter at ten feet from the output end


6


of the fan housing


7


. The velocity of the focused beam (vanes at 10°) at ten feet is 20 mph. When the vanes


3


are set at 45°, the flood beam has an eight foot diameter at ten feet from the output end


6


of the fan housing


7


. Using different sized motors in the fan allows for various sized beams to be obtained. The vanes


3


are adjustable from a controller, such as a dial


5


, located on the fan housing


7


.




Referring to

FIGS. 3 and 4

, dial


5


is connected by a shaft


43


to gear


41


. A track


45


is rotatably connected along an interior circumference of the fan housing


7


. The innermost edge


47


of the track


45


has teeth


49


. Turning dial


5


causes rotation of gear


41


. The teeth


51


of gear


41


mesh with the teeth


49


of track


45


. When gear


41


is caused to rotate by dial


5


, the teeth


51


of the gear


41


engage the teeth


49


of track


45


causing the track to rotate. The rotation of the track


45


engages teeth


55


of vane gears


53


, which causes the vane gears to rotate. As shown in

FIG. 3

, a vane


3


is connected to each gear


53


. Rotation of the dial


5


adjusts the vanes


3


between angles of 10 to 45 degrees.




In a preferred embodiment, a fan blade assembly


9


is a one-piece construction made of Lexan. In another embodiment, an aluminum hub is used with polycarbonate blades. Preferably, the fan blade assembly


9


has a central hub


21


from which three curved blades


23


extend as part of the one piece construction, as shown in FIG.


3


. For fans utilizing a motor with larger horsepower, a fan blade assembly that has more than three blades may be used. The fan housing


7


is roto-molded and is made to withstand abuse. Preferably, the fan housing is cylindrical. Upper


31


and lower


33


grills protect the components within the fan housing


7


from damage due to foreign elements entering the fan housing. Handles


35


on the exterior surface


37


of the fan housing


7


provide an easy means for carrying and moving the fan


1


.




A motor


11


drives the fan blade assembly


9


. Shaft


29


connects the fan blade assembly


9


to the motor


11


. Preferably, the motor


11


is a brushless 4 amp AC motor. In another embodiment, a brushless 10 amp AC motor may be used. Supports


25


connect the motor


11


to the inner surface


27


of the fan housing


7


. The motor speed is controlled by a controller, such as a rotating dial


13


, on the fan housing


7


, as shown in FIG.


2


. no The rotating dial


13


allows for adjusting the motor speed from 0 to 100%. Pressing a controller, such as “burst” button


15


, located on the fan housing


7


instantly provides 100% motor speed. The fan motor


11


runs at full speed for as long as the “burst” button is depressed. Power cord


39


supplies power to the fan motor


11


from an external power source.




A stand, such as mounting yoke


17


, is pivotally connected to opposite sides of the fan housing


7


, allowing the fan


1


to be set at various angles. The fan


1


may also be inverted during transportation so that the fan is protected by the yoke


17


. The stand may have a mounting hole to attach to an industry standard “baby” pins and outside pin diameter fits into industry standard “junior” stands. The stand also allows for placement of the fan on the ground. Employing a pivotal connection between the stand and the fan allows for tiltable operation of the fan.




While the invention has been described with reference to specific embodiments, modifications and variations of the invention may be constructed without departing from the scope of the invention.



Claims
  • 1. A fan apparatus, comprising:a housing; a fan blade assembly in the housing; a motor connected to the fan blade assembly for driving the fan blade assembly; and an adjustable vane assembly connected to the housing for controlling a width of wind generated by the fan blade assembly, wherein the adjustable vane assembly comprises a flat circular track movably attached to an interior circumference of the housing, a plurality of teeth on the track, at least one primary gear disposed on the track for moving the track, a plurality of secondary gears disposed on the track, said plurality of secondary gears move with the track when the track is moved by the at least one primary gear, and an adjustable vane connected to each secondary gear and extending in a direction toward a center of the housing, said adjustable vane rotates in response to movement of the secondary gear.
  • 2. The apparatus of claim 1 wherein the housing is cylindrical.
  • 3. The apparatus of claim 1, further comprising:a shaft connecting the motor and the fan assembly; and wherein the fan blade assembly comprises a central hub connected to the shaft and a plurality of fan blades connected to the hub.
  • 4. The apparatus of claim 3, wherein the fan blade assembly is of a one-piece construction.
  • 5. The apparatus of claim 4, further comprising:a controller connected to the at least one primary gear for moving the at least one primary gear to adjust the adjustable vanes.
  • 6. The apparatus of claim 5, wherein the controller is located on the housing.
  • 7. The apparatus of claim 1, further comprising:a controller connected to the motor for adjusting the motor speed.
  • 8. The apparatus of claim 7, wherein the controller is located on the housing.
  • 9. The apparatus of claim 1, further comprising:a controller connected to the motor for instantly bumping a motor speed to a highest setting when a button is depressed.
  • 10. The apparatus of claim 9, wherein the controller is located on the housing.
  • 11. The apparatus of claim 1, further comprising:a stand pivotally connected to the housing for supporting the fan apparatus and for angularly adjusting the fan apparatus.
  • 12. The apparatus of claim 1, wherein the housing is roto-molded.
  • 13. A method of controlling fan generated wind, comprising:providing a fan housing; generating wind with a fan blade assembly in the fan housing; driving the fan assembly by a motor; adjusting the speed of the motor for controlling a speed of the generated wind; adjusting wind flow with an adjustable vane assembly in the fan housing, wherein the adjustable vane assembly comprises a plurality of adjustable vanes; and wherein the adjusting wind flow comprises adjusting the angle between the plurality of adjustable vanes and the generated wind for controlling width of the generated wind.
  • 14. The method of claim 13, wherein the adjusting the speed of the motor comprises operating a controller connected to the motor for increasing or decreasing the speed of the motor.
  • 15. The method of claim 13, wherein the adjusting the speed of the motor comprises operating a controller connected to the motor for instantly increasing the speed of the motor to the maximum speed.
  • 16. The method of claim 13, further comprising:connecting the motor to a lighting dimmer board; and adjusting the speed of the motor from the lighting dimmer board for controlling the speed of the generated wind.
US Referenced Citations (15)
Number Name Date Kind
2382913 Robinson Aug 1945 A
2985427 Houghton May 1961 A
3231239 Tyler Jan 1966 A
3371855 Bruns Mar 1968 A
3450339 Geoffroy Jun 1969 A
3481534 Price Dec 1969 A
3685921 Dekeyser Aug 1972 A
4486144 Hung Dec 1984 A
4521153 Morimoto et al. Jun 1985 A
5295811 Chiu Mar 1994 A
5347205 Piland Sep 1994 A
5480282 Matson Jan 1996 A
5503526 Neils et al. Apr 1996 A
5620301 Lawer Apr 1997 A
5622036 Hill Apr 1997 A