This application claims the priority of United Kingdom Application No. 1014831.0, filed Sep. 7, 2010, the entire contents of which are incorporated herein by reference.
The present invention relates to a portable fan. Particularly, but not exclusively, the present invention relates to a floor or table-top fan, such as a desk, tower or pedestal fan.
A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a ‘wind chill’ or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generated located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.
WO 2009/030879 describes a fan assembly which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a cylindrical base which houses a motor-driven impeller for drawing a primary air flow into the base, and an annular nozzle connected to the base and comprising an annular air outlet through which the primary air flow is emitted from the fan. The nozzle defines a central opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow.
Our co-pending patent application PCT/GB2010/050270 also describes such a fan assembly. Within the base, the impeller is located within an impeller housing, and the motor for driving the impeller is located within a motor bucket which is mounted on the impeller housing. The impeller housing is supported within the base by a plurality of angularly spaced supports. Each support is, in turn, mounted on a respective support surface extending radially inwardly from the inner surface of the base. In order to provide an air tight seal between the impeller housing and the base, a lip seal is located on the outer surface of the impeller housing for engaging the inner surface of the base.
In a first aspect, the present invention provides a fan comprising a casing having an air inlet and an air outlet, an impeller housing located within the casing, an impeller located within the impeller housing for generating an air flow along a path extending from the air inlet to the air outlet through the impeller housing, a motor housing connected to the impeller housing, a motor located within the motor housing for driving the impeller, and a bellows support for supporting the impeller housing within the casing, the bellows support being mounted on a seat connected to the casing, the bellows support extending about the impeller housing and forming a seal between the impeller housing and the casing.
We have found that the use of a bellows support for mounting the impeller housing within the casing can reduce the transmission of vibrations from the motor housing to the casing in comparison to when a plurality of angularly spaced supports are used to mount the impeller housing within the casing. The bellows support can also form a seal between the casing and the impeller housing to prevent air from leaking back towards the air inlet of the casing along a path extending between the casing and the impeller housing, thereby forcing the pressurized air flow generated by the impeller to pass to the air outlet of the casing. As a separate lip seal is not required for sealing between the impeller housing and the casing, the number of components of the fan, and therefore the manufacturing and assembly costs, can be reduced.
The bellows support is preferably arranged within the casing so as to bear evenly thereabout the weight of the impeller, impeller housing, motor and motor housing. The bellows support preferably comprises an upper end connected to the impeller housing, and a lower end disposed on the seat. For example, the upper end of the bellows support may comprise a groove for retaining a generally annular rib located on the outer surface of the impeller housing, thereby forming a seal between the impeller housing and the bellows support. The bellows support preferably comprises a sealing member, preferably in the form of a lip seal, for engaging the inner surface of the casing. The lip seal is preferably integral with the bellows support.
The fan preferably comprises means for inhibiting rotation of the bellows support relative to the casing. For example, the seat may comprise a plurality of angularly spaced support surfaces and the rotation inhibiting means may comprise at least one rotation inhibiting member connected to the bellows support and located between adjacent support surfaces so that any rotational force acting on the bellows support urges the rotation inhibiting member against a side wall of one of these adjacent support surfaces. In a preferred embodiment, the rotation inhibiting means comprises a plurality of such rotation inhibiting members each located adjacent a respective one of the adjacent support surfaces.
The bellows support is preferably substantially co-axial with the impeller. The fan preferably comprises means for inhibiting radial displacement of the bellows support relative to the casing away from its co-axial alignment with the impeller. In a preferred embodiment the radial displacement inhibiting means comprises a collar connected to the bellows. This collar preferably depends downwardly from the lower end of the bellows support. The collar may be surrounded by the seat so that any radial force acting on the bellows support urges the collar against the seat to inhibit radial displacement of the bellows support relative to the seat.
The seat preferably extends radially inwardly from the inner surface of the casing. The seat is preferably integral with the casing.
The impeller housing preferably comprises a shroud extending about and substantially concentric with the impeller.
In a second aspect, the present invention also provides a fan comprising a casing having an air inlet and an air outlet, an impeller housing located within the casing, an impeller located within the impeller housing for generating an air flow along a path extending from the air inlet to the air outlet through the impeller housing, a motor housing connected to the impeller housing, a motor located within the motor housing for driving the impeller, and a bellows extending about the impeller housing and forming a seal between the impeller housing and the casing.
Features described above in connection with the first aspect of the invention are equally applicable to the second aspect of the invention, and vice versa.
Preferred features of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
As also shown in
The outer casing section 28 and the inner casing section 30 together define an annular interior passage 35 (shown in
The air outlet 20 is located towards the rear of the casing 14, and is arranged to emit the primary air flow towards the front of the fan 10, through the opening 32. The air outlet 20 extends at least partially about the opening 32, and preferably surrounds the opening 32. The air outlet 20 is defined by overlapping, or facing, portions of the internal surface of the outer casing section 28 and the external surface of the inner casing section 30, respectively, and is in the form of an annular slot, preferably having a relatively constant width in the range from 0.5 to 5 mm. In this example the air outlet has a width of around 1 mm. Spacers may be spaced about the air outlet 20 for urging apart the overlapping portions of the outer casing section 28 and the inner casing section 30 to maintain the width of the air outlet 20 at the desired level. These spacers may be integral with either the outer casing section 28 or the inner casing section 30.
The air outlet 20 is shaped to direct the primary air flow over the external surface of the inner casing section 30. The external surface of the inner casing section 30 comprises a Coanda surface 36 located adjacent the air outlet 20 and over which the air outlet 20 directs the air emitted from the fan 10, a diffuser surface 38 located downstream of the Coanda surface 36 and a guide surface 40 located downstream of the diffuser surface 38. The diffuser surface 38 is arranged to taper away from the central axis X of the opening 32 in such a way so as to assist the flow of air emitted from the fan 10. The angle subtended between the diffuser surface 38 and the central axis X of the opening 32 is in the range from 5 to 25°, and in this example is around 15°. The guide surface 40 is arranged at an angle to the diffuser surface 38 to further assist the efficient delivery of a cooling air flow from the fan 10. The guide surface 40 is preferably arranged substantially parallel to the central axis X of the opening 32 to present a substantially flat and substantially smooth face to the air flow emitted from the air outlet 20. A visually appealing tapered surface 42 is located downstream from the guide surface 40, terminating at a tip surface 44 lying substantially perpendicular to the central axis X of the opening 32. The angle subtended between the tapered surface 42 and the central axis X of the opening 32 is preferably around 45°.
The main body section 50 comprises the air inlet 14 through which the primary air flow enters the fan assembly 10. In this embodiment the air inlet 14 comprises an array of apertures formed in the main body section 50. Alternatively, the air inlet 14 may comprise one or more grilles or meshes mounted within windows formed in the main body section 50. The main body section 50 is open at the upper end (as illustrated) thereof to provide an air outlet 54 through which the primary air flow is exhausted from the body 12.
The main body section 50 may be tilted relative to the lower body section 52 to adjust the direction in which the primary air flow is emitted from the fan assembly 10. For example, the upper surface of the lower body section 52 and the lower surface of the main body section 50 may be provided with interconnecting features which allow the main body section 50 to move relative to the lower body section 52 while preventing the main body section 50 from being lifted from the lower body section 52. For example, the lower body section 52 and the main body section 50 may comprise interlocking L-shaped members.
The lower body section 52 is mounted on a base 56 for engaging a surface on which the fan assembly 10 is located. The lower body 52 comprises the aforementioned user interface and a control circuit, indicated generally at 58, for controlling various functions of the fan 10 in response to operation of the user interface. The lower body section 22 also houses a mechanism for oscillating the lower body section 22 relative to the base 36. The operation of the oscillation mechanism is controlled by the control circuit 58 in response to the user's depression of the button 24 of the user interface. The range of each oscillation cycle of the lower body section 22 relative to the base 36 is preferably between 60° and 120°, and the oscillation mechanism is arranged to perform around 3 to 5 oscillation cycles per minute. A mains power cable (not shown) for supplying electrical power to the fan 10 extends through an aperture formed in the base 56.
The main body section 50 houses an impeller 60 for drawing the primary air flow through the air inlet 14 and into the body 12. The impeller 60 is connected to a rotary shaft 62 extending outwardly from a motor 64. In this embodiment, the motor 64 is a DC brushless motor having a speed which is variable by the control circuit 58 in response to user manipulation of the dial 26. The maximum speed of the motor 64 is preferably in the range from 5,000 to 10,000 rpm.
The motor 64 is housed within a motor housing. The motor housing comprises a lower section 66 which supports the motor 64, and an upper section 68 connected to the lower section 66. The shaft 62 protrudes through an aperture formed in the lower section 66 of the motor housing to allow the impeller to be connected to the shaft 62. The upper section 68 of the motor housing comprises a removable hatch 70 through which the motor 64 is inserted into the motor housing. The upper section 68 comprises an annular diffuser 72 having a plurality of blades for receiving the primary air flow exhausted from the impeller 64 and for guiding the air flow to the air outlet 54 of the main body section 50.
The motor housing is supported within the main body section 50 by an impeller shroud 74. The shroud 74 is generally frusto-conical in shape, and comprises an air inlet 76 at the relatively small, outwardly flared lower end thereof (as illustrated) for receiving the primary air flow, and an air outlet 78 at the relatively large, upper end thereof (as illustrated) which is located immediately upstream from the diffuser 72 when the motor housing is supported within the shroud 74. The impeller 60 and the shroud 74 are shaped so when the impeller 60 and motor housing are supported by the shroud 74, the blade tips of the impeller 60 are in close proximity to, but does not contact, the inner surface of the shroud 74, and the impeller 60 is substantially co-axial with the shroud 74. With reference also to
The shroud 74 is supported within the main body section 50 by a bellows support 90. The bellows support 90 is preferably formed from elastically deformable material, and in this example is formed from natural rubber. The bellows support 90 extends about the shroud 74. The inner surface of the upper end (as illustrated) of the bellows support 90 comprises a groove 92 for receiving a rib 94 formed on the outer surface of the shroud 74. Again, both the groove 92 and the projection 94 extend less that 360°, and by substantially the same amount, about the rotational axis of the shaft 62 and the impeller 64 to define an aperture 96 between the shroud 74 and the bellows support 90 through which the cable passes between the control circuit 58 and the motor 64. This aperture 96 is sealed by a grommet 97 which is located around the cable so that there is an air-tight seal between the shroud 74 and the bellows support 90. In this example, the groove 92 also extends around the rotational axis of the shaft 62 and the impeller 64 by an angle of around 320°.
With reference also to
A collar 104 also depends from the lower end of the bellows support 90. The collar 104 has an outer diameter which is substantially the same as the diameter of the radially inner edges of the seat 98 so that when the bellows support 90 is mounted on the seat 98, the collar 104 engages the inner edges of the support surfaces 98a, 98b, 98c of the seat 98. This ensures that the shroud 74 and bellows support 90 are accurately radially aligned within the main body section 50, preferably so that the shroud 74 is co-axial with the main body section 50.
The bellows support 90 also comprises a flexible sealing member extending about the outer surface thereof for engaging the inner surface of the main body section 50. The flexible sealing member is preferably integral with the bellows support 90, and is preferably in the form of an annular lip seal 106. The outer diameter of the lip seal 106 is preferably greater than the diameter of the inner surface of the main body section 50 so that the tip of the lip seal 106 is urged against the inner surface of the main body section 50 when the bellows support 90 is inserted into the casing 16 to form an air tight seal between the motor casing section 50 and the bellows support 90.
Returning to
To operate the fan 10 the user presses button 22 of the user interface, in response to which the control circuit 58 activates the motor 64 to rotate the impeller 60. The rotation of the impeller 60 causes a primary air flow to be drawn into the body 12 through the air inlet 14. The user may control the speed of the motor 64, and therefore the rate at which air is drawn into the body 12 through the air inlet 14, by manipulating the dial 26. Depending on the speed of the motor 64, the primary air flow generated by the impeller 60 may be between 20 and 30 liters per second. The rotation of the impeller 60 by the motor 64 generates vibrations which are transferred through the motor housing and the shroud 74 to the bellows support 90. Due to the convoluted shape of the bellows support 90, the upper end of the bellows support 90 is able to move both axially and radially relative to the lower end of the bellows support 90, which inhibits the transfer of these vibrations to the seat 98 lower end of the bellows support 90, and thus to the main body section 50 and the remainder of the body 12 of the fan 10.
The primary air flow passes sequentially between the impeller 60 and the shroud 74, and through the diffuser 72, before passing through the air outlet 54 of the body 12 and into the casing 14. The engagement between the lip seal 106 and the inner surface of the main body section 50 prevents the primary air flow from returning to the air inlet 76 of the shroud 74 along a path extending between the inner surface of the main body section 50 and the outer surface of the shroud 74. The pressure of the primary air flow at the air outlet 54 of the body 12 may be at least 150 Pa, and is preferably in the range from 250 to 1.5 kPa. Within the casing 14, the primary air flow is divided into two air streams which pass in opposite directions around the opening 32 of the casing 14. As the air streams pass through the interior passage 35, air is emitted through the air outlet 20. The primary air flow emitted from the air outlet 20 is directed over the Coanda surface 36 of the casing 14, causing a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the air outlet 20 and from around the rear of the casing 14. This secondary air flow passes through the central opening 32 of the casing 14, where it combines with the primary air flow to produce a total air flow, or air current, projected forward from the casing 14.
Number | Date | Country | Kind |
---|---|---|---|
1014831.0 | Sep 2010 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1357261 | Svoboda | Nov 1920 | A |
1767060 | Ferguson | Jun 1930 | A |
1896869 | Larsh | Feb 1933 | A |
2014185 | Martin | Sep 1935 | A |
2035733 | Wall | Mar 1936 | A |
D103476 | Weber | Mar 1937 | S |
2115883 | Sher | May 1938 | A |
D115344 | Chapman | Jun 1939 | S |
2210458 | Keilholtz | Aug 1940 | A |
2258961 | Saathoff | Oct 1941 | A |
2336295 | Reimuller | Dec 1943 | A |
2433795 | Stokes | Dec 1947 | A |
2473325 | Aufiero | Jun 1949 | A |
2476002 | Stalker | Jul 1949 | A |
2488467 | De Lisio | Nov 1949 | A |
2510132 | Morrison | Jun 1950 | A |
2544379 | Davenport | Mar 1951 | A |
2547448 | Demuth | Apr 1951 | A |
2583374 | Hoffman | Jan 1952 | A |
2620127 | Radcliffe | Dec 1952 | A |
2765977 | Morrison | Oct 1956 | A |
2808198 | Morrison | Oct 1957 | A |
2813673 | Smith | Nov 1957 | A |
2830779 | Wentling | Apr 1958 | A |
2838229 | Belanger | Jun 1958 | A |
2922277 | Bertin | Jan 1960 | A |
2922570 | Allen | Jan 1960 | A |
3004403 | Laporte | Oct 1961 | A |
3047208 | Coanda | Jul 1962 | A |
3270655 | Guirl et al. | Sep 1966 | A |
D206973 | De Lisio | Feb 1967 | S |
3444817 | Caldwell | May 1969 | A |
3503138 | Fuchs et al. | Mar 1970 | A |
3518776 | Wolff et al. | Jul 1970 | A |
3724092 | McCleerey | Apr 1973 | A |
3743186 | Mocarski | Jul 1973 | A |
3795367 | Mocarski | Mar 1974 | A |
3872916 | Beck | Mar 1975 | A |
3875745 | Franklin | Apr 1975 | A |
3885891 | Throndson | May 1975 | A |
3943329 | Hlavac | Mar 1976 | A |
4037991 | Taylor | Jul 1977 | A |
4046492 | Inglis | Sep 1977 | A |
4061188 | Beck | Dec 1977 | A |
4073613 | Desty | Feb 1978 | A |
4113416 | Kataoka et al. | Sep 1978 | A |
4136735 | Beck et al. | Jan 1979 | A |
4173995 | Beck | Nov 1979 | A |
4180130 | Beck et al. | Dec 1979 | A |
4184541 | Beck et al. | Jan 1980 | A |
4192461 | Arborg | Mar 1980 | A |
4332529 | Alperin | Jun 1982 | A |
4336017 | Desty | Jun 1982 | A |
4342204 | Melikian et al. | Aug 1982 | A |
4448354 | Reznick et al. | May 1984 | A |
4502837 | Blair et al. | Mar 1985 | A |
4568243 | Schubert et al. | Feb 1986 | A |
4630475 | Mizoguchi | Dec 1986 | A |
4643351 | Fukamachi et al. | Feb 1987 | A |
4703152 | Shih-Chin | Oct 1987 | A |
4718870 | Watts | Jan 1988 | A |
4732539 | Shin-Chin | Mar 1988 | A |
4790133 | Stuart | Dec 1988 | A |
4850804 | Huang | Jul 1989 | A |
4878620 | Tarleton | Nov 1989 | A |
4893990 | Tomohiro et al. | Jan 1990 | A |
4978281 | Conger, IV | Dec 1990 | A |
5061405 | Stanek et al. | Oct 1991 | A |
D325435 | Coup et al. | Apr 1992 | S |
5168722 | Brock | Dec 1992 | A |
5176856 | Takahashi et al. | Jan 1993 | A |
5188508 | Scott et al. | Feb 1993 | A |
5296769 | Havens et al. | Mar 1994 | A |
5310313 | Chen | May 1994 | A |
5317815 | Hwang | Jun 1994 | A |
5402938 | Sweeney | Apr 1995 | A |
5407324 | Starnes, Jr. et al. | Apr 1995 | A |
5425902 | Miller et al. | Jun 1995 | A |
5518370 | Wang et al. | May 1996 | A |
5609473 | Litvin | Mar 1997 | A |
5645769 | Tamaru et al. | Jul 1997 | A |
5649370 | Russo | Jul 1997 | A |
5730582 | Heitmann | Mar 1998 | A |
5735683 | Muschelknautz | Apr 1998 | A |
5762034 | Foss | Jun 1998 | A |
5762661 | Kleinberger et al. | Jun 1998 | A |
5783117 | Byassee et al. | Jul 1998 | A |
D398983 | Keller et al. | Sep 1998 | S |
5841080 | Iida et al. | Nov 1998 | A |
5843344 | Junkel et al. | Dec 1998 | A |
5862037 | Behl | Jan 1999 | A |
5868197 | Potier | Feb 1999 | A |
5881685 | Foss et al. | Mar 1999 | A |
D415271 | Feer | Oct 1999 | S |
6015274 | Bias et al. | Jan 2000 | A |
6065936 | Shingai et al. | May 2000 | A |
6073881 | Chen | Jun 2000 | A |
6082969 | Carroll et al. | Jul 2000 | A |
D429808 | Krauss et al. | Aug 2000 | S |
6123618 | Day | Sep 2000 | A |
6155782 | Hsu | Dec 2000 | A |
D435899 | Melwani | Jan 2001 | S |
6254337 | Arnold | Jul 2001 | B1 |
6269549 | Carlucci et al. | Aug 2001 | B1 |
6278248 | Hong et al. | Aug 2001 | B1 |
6282746 | Schleeter | Sep 2001 | B1 |
6293121 | Labrador | Sep 2001 | B1 |
6321034 | Jones-Lawlor et al. | Nov 2001 | B2 |
6338610 | Harada et al. | Jan 2002 | B1 |
6348106 | Embree et al. | Feb 2002 | B1 |
6386845 | Bedard | May 2002 | B1 |
6454527 | Nishiyama et al. | Sep 2002 | B2 |
6480672 | Rosenzweig et al. | Nov 2002 | B1 |
6511288 | Gatley, Jr. | Jan 2003 | B1 |
6599088 | Stagg | Jul 2003 | B2 |
D485895 | Melwani | Jan 2004 | S |
6709236 | Hoelzer | Mar 2004 | B1 |
6789787 | Stutts | Sep 2004 | B2 |
6830433 | Birdsell et al. | Dec 2004 | B2 |
7059826 | Lasko | Jun 2006 | B2 |
7088913 | Verhoorn et al. | Aug 2006 | B1 |
7147336 | Chou | Dec 2006 | B1 |
D539414 | Russak et al. | Mar 2007 | S |
7186075 | Winkler et al. | Mar 2007 | B2 |
7189053 | Winkler et al. | Mar 2007 | B2 |
7317267 | Schmid et al. | Jan 2008 | B2 |
7455504 | Hill et al. | Nov 2008 | B2 |
7478993 | Hong et al. | Jan 2009 | B2 |
7540474 | Huang et al. | Jun 2009 | B1 |
D598532 | Dyson et al. | Aug 2009 | S |
D602143 | Gammack et al. | Oct 2009 | S |
D602144 | Dyson et al. | Oct 2009 | S |
D605748 | Gammack et al. | Dec 2009 | S |
7664377 | Liao | Feb 2010 | B2 |
D614280 | Dyson et al. | Apr 2010 | S |
7775848 | Auerbach | Aug 2010 | B1 |
7806388 | Junkel et al. | Oct 2010 | B2 |
7921962 | Liddell | Apr 2011 | B2 |
8092166 | Nicolas et al. | Jan 2012 | B2 |
8430624 | Cookson et al. | Apr 2013 | B2 |
8469658 | Gammack et al. | Jun 2013 | B2 |
20020106547 | Sugawara et al. | Aug 2002 | A1 |
20030059307 | Moreno et al. | Mar 2003 | A1 |
20030171093 | Gumucio Del Pozo | Sep 2003 | A1 |
20040022631 | Birdsell et al. | Feb 2004 | A1 |
20040049842 | Prehodka | Mar 2004 | A1 |
20040149881 | Allen | Aug 2004 | A1 |
20050031448 | Lasko et al. | Feb 2005 | A1 |
20050053465 | Roach et al. | Mar 2005 | A1 |
20050069407 | Winkler et al. | Mar 2005 | A1 |
20050128698 | Huang | Jun 2005 | A1 |
20050163670 | Alleyne et al. | Jul 2005 | A1 |
20050173997 | Schmid et al. | Aug 2005 | A1 |
20050276684 | Huang et al. | Dec 2005 | A1 |
20050281672 | Parker et al. | Dec 2005 | A1 |
20060172682 | Orr et al. | Aug 2006 | A1 |
20060199515 | Lasko et al. | Sep 2006 | A1 |
20070035189 | Matsumoto | Feb 2007 | A1 |
20070041857 | Fleig | Feb 2007 | A1 |
20070048159 | DiMatteo et al. | Mar 2007 | A1 |
20070065280 | Fok | Mar 2007 | A1 |
20070166160 | Russak et al. | Jul 2007 | A1 |
20070176502 | Kasai et al. | Aug 2007 | A1 |
20070224044 | Hong et al. | Sep 2007 | A1 |
20070269323 | Zhou et al. | Nov 2007 | A1 |
20080020698 | Spaggiari | Jan 2008 | A1 |
20080152482 | Patel | Jun 2008 | A1 |
20080166224 | Giffin | Jul 2008 | A1 |
20080286130 | Purvines | Nov 2008 | A1 |
20080304986 | Kenyon et al. | Dec 2008 | A1 |
20080314250 | Cowie et al. | Dec 2008 | A1 |
20090026850 | Fu | Jan 2009 | A1 |
20090039805 | Tang | Feb 2009 | A1 |
20090060710 | Gammack et al. | Mar 2009 | A1 |
20090060711 | Gammack et al. | Mar 2009 | A1 |
20090191054 | Winkler | Jul 2009 | A1 |
20090214341 | Craig | Aug 2009 | A1 |
20100150699 | Nicolas et al. | Jun 2010 | A1 |
20100162011 | Min | Jun 2010 | A1 |
20100171465 | Seal et al. | Jul 2010 | A1 |
20100225012 | Fitton et al. | Sep 2010 | A1 |
20100226749 | Gammack et al. | Sep 2010 | A1 |
20100226750 | Gammack | Sep 2010 | A1 |
20100226751 | Gammack et al. | Sep 2010 | A1 |
20100226752 | Gammack et al. | Sep 2010 | A1 |
20100226753 | Dyson et al. | Sep 2010 | A1 |
20100226754 | Hutton et al. | Sep 2010 | A1 |
20100226758 | Cookson et al. | Sep 2010 | A1 |
20100226763 | Gammack et al. | Sep 2010 | A1 |
20100226764 | Gammack et al. | Sep 2010 | A1 |
20100226769 | Helps | Sep 2010 | A1 |
20100226771 | Crawford et al. | Sep 2010 | A1 |
20100226787 | Gammack et al. | Sep 2010 | A1 |
20100226797 | Fitton et al. | Sep 2010 | A1 |
20100226801 | Gammack | Sep 2010 | A1 |
20100254800 | Fitton et al. | Oct 2010 | A1 |
20110002775 | Ma et al. | Jan 2011 | A1 |
20110058935 | Gammack et al. | Mar 2011 | A1 |
20110110805 | Gammack et al. | May 2011 | A1 |
20110164959 | Fitton et al. | Jul 2011 | A1 |
20110223014 | Crawford et al. | Sep 2011 | A1 |
20110223015 | Gammack et al. | Sep 2011 | A1 |
20120031509 | Wallace et al. | Feb 2012 | A1 |
20120033952 | Wallace et al. | Feb 2012 | A1 |
20120034108 | Wallace et al. | Feb 2012 | A1 |
20120039705 | Gammack | Feb 2012 | A1 |
20120045315 | Gammack | Feb 2012 | A1 |
20120045316 | Gammack | Feb 2012 | A1 |
20120082561 | Gammack et al. | Apr 2012 | A1 |
20120093629 | Fitton et al. | Apr 2012 | A1 |
20120093630 | Fitton et al. | Apr 2012 | A1 |
20120114513 | Simmonds et al. | May 2012 | A1 |
20120230658 | Fitton et al. | Sep 2012 | A1 |
20130011252 | Crawford et al. | Jan 2013 | A1 |
20130045084 | Tu et al. | Feb 2013 | A1 |
20130189083 | Atkinson | Jul 2013 | A1 |
20130302156 | Nurzynski | Nov 2013 | A1 |
20130309065 | Johnson et al. | Nov 2013 | A1 |
20130309066 | Atkinson et al. | Nov 2013 | A1 |
20130309080 | Johnson et al. | Nov 2013 | A1 |
20130323025 | Crawford et al. | Dec 2013 | A1 |
20140017069 | Peters | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
201100923 | Sep 2011 | AU |
560119 | Aug 1957 | BE |
1055344 | May 1979 | CA |
2155482 | Sep 1996 | CA |
346643 | May 1960 | CH |
2085866 | Oct 1991 | CN |
2111392 | Jul 1992 | CN |
2228996 | Jun 1996 | CN |
1232143 | Oct 1999 | CN |
1288506 | Mar 2001 | CN |
1336482 | Feb 2002 | CN |
1437300 | Aug 2003 | CN |
2650005 | Oct 2004 | CN |
2713643 | Jul 2005 | CN |
1680727 | Oct 2005 | CN |
2833197 | Nov 2006 | CN |
101046318 | Oct 2007 | CN |
201180678 | Jan 2009 | CN |
201221477 | Apr 2009 | CN |
201281416 | Jul 2009 | CN |
201349269 | Nov 2009 | CN |
101749288 | Jun 2010 | CN |
201502549 | Jun 2010 | CN |
101816534 | Sep 2010 | CN |
101825095 | Sep 2010 | CN |
101825102 | Sep 2010 | CN |
201568337 | Sep 2010 | CN |
101936310 | Jan 2011 | CN |
101984299 | Mar 2011 | CN |
101985948 | Mar 2011 | CN |
201763705 | Mar 2011 | CN |
201763706 | Mar 2011 | CN |
201770513 | Mar 2011 | CN |
201779080 | Mar 2011 | CN |
201802648 | Apr 2011 | CN |
102095236 | Jun 2011 | CN |
102305220 | Jan 2012 | CN |
102367813 | Mar 2012 | CN |
202165330 | Mar 2012 | CN |
1 291 090 | Mar 1969 | DE |
24 51 557 | May 1976 | DE |
27 48 724 | May 1978 | DE |
3644567 | Jul 1988 | DE |
41 27 134 | Feb 1993 | DE |
195 10 397 | Sep 1996 | DE |
197 12 228 | Oct 1998 | DE |
100 00 400 | Mar 2001 | DE |
10041805 | Jun 2002 | DE |
10 2009 007 037 | Aug 2010 | DE |
10 2009 044 349 | May 2011 | DE |
0 044 494 | Jan 1982 | EP |
0186581 | Jul 1986 | EP |
0 955 469 | Nov 1999 | EP |
1 094 224 | Apr 2001 | EP |
1 138 954 | Oct 2001 | EP |
1 566 548 | Aug 2005 | EP |
1 779 745 | May 2007 | EP |
1 939 456 | Jul 2008 | EP |
1 980 432 | Oct 2008 | EP |
2 000 675 | Dec 2008 | EP |
2191142 | Jun 2010 | EP |
1033034 | Jul 1953 | FR |
1119439 | Jun 1956 | FR |
1.387.334 | Jan 1965 | FR |
2 534 983 | Apr 1984 | FR |
2 640 857 | Jun 1990 | FR |
2 658 593 | Aug 1991 | FR |
2794195 | Dec 2000 | FR |
2 874 409 | Feb 2006 | FR |
2 906 980 | Apr 2008 | FR |
22235 | Jun 1914 | GB |
383498 | Nov 1932 | GB |
593828 | Oct 1947 | GB |
601222 | Apr 1948 | GB |
633273 | Dec 1949 | GB |
641622 | Aug 1950 | GB |
661747 | Nov 1951 | GB |
863 124 | Mar 1961 | GB |
1067956 | May 1967 | GB |
1 262 131 | Feb 1972 | GB |
1 265 341 | Mar 1972 | GB |
1 278 606 | Jun 1972 | GB |
1 304 560 | Jan 1973 | GB |
1 403 188 | Aug 1975 | GB |
1 434 226 | May 1976 | GB |
1 501 473 | Feb 1978 | GB |
2 094 400 | Sep 1982 | GB |
2 107 787 | May 1983 | GB |
2 111 125 | Jun 1983 | GB |
2 178 256 | Feb 1987 | GB |
2 185 531 | Jul 1987 | GB |
2 185 533 | Jul 1987 | GB |
2 218 196 | Nov 1989 | GB |
2 236 804 | Apr 1991 | GB |
2 237 323 | May 1991 | GB |
2 240 268 | Jul 1991 | GB |
2 242 935 | Oct 1991 | GB |
2 285 504 | Jul 1995 | GB |
2 289 087 | Nov 1995 | GB |
2383277 | Jun 2003 | GB |
2 428 569 | Feb 2007 | GB |
2 452 593 | Mar 2009 | GB |
2452490 | Mar 2009 | GB |
2463698 | Mar 2010 | GB |
2464736 | Apr 2010 | GB |
2466058 | Jun 2010 | GB |
2468312 | Sep 2010 | GB |
2468313 | Sep 2010 | GB |
2468315 | Sep 2010 | GB |
2468319 | Sep 2010 | GB |
2468320 | Sep 2010 | GB |
2468323 | Sep 2010 | GB |
2468328 | Sep 2010 | GB |
2468331 | Sep 2010 | GB |
2468369 | Sep 2010 | GB |
2473037 | Mar 2011 | GB |
2479760 | Oct 2011 | GB |
2482547 | Feb 2012 | GB |
31-13055 | Aug 1956 | JP |
35-4369 | Mar 1960 | JP |
39-7297 | Mar 1964 | JP |
49-150403 | Dec 1974 | JP |
51-7258 | Jan 1976 | JP |
53-51608 | May 1978 | JP |
53-60100 | May 1978 | JP |
56-167897 | Dec 1981 | JP |
57-71000 | May 1982 | JP |
57-157097 | Sep 1982 | JP |
59-90797 | May 1984 | JP |
59-167984 | Nov 1984 | JP |
60-105896 | Jul 1985 | JP |
61-31830 | Feb 1986 | JP |
61-116093 | Jun 1986 | JP |
61-280787 | Dec 1986 | JP |
62-223494 | Oct 1987 | JP |
63-179198 | Jul 1988 | JP |
63-306340 | Dec 1988 | JP |
64-21300 | Feb 1989 | JP |
64-83884 | Mar 1989 | JP |
1-138399 | May 1989 | JP |
1-224598 | Sep 1989 | JP |
2-146294 | Jun 1990 | JP |
2-218890 | Aug 1990 | JP |
2-248690 | Oct 1990 | JP |
3-3419 | Jan 1991 | JP |
3-52515 | May 1991 | JP |
3-267598 | Nov 1991 | JP |
4-43895 | Feb 1992 | JP |
4-366330 | Dec 1992 | JP |
5-157093 | Jun 1993 | JP |
5-164089 | Jun 1993 | JP |
5-263786 | Oct 1993 | JP |
6-74190 | Mar 1994 | JP |
6-86898 | Mar 1994 | JP |
6-147188 | May 1994 | JP |
6-257591 | Sep 1994 | JP |
6-280800 | Oct 1994 | JP |
6-336113 | Dec 1994 | JP |
7-190443 | Jul 1995 | JP |
7-247991 | Sep 1995 | JP |
8-21400 | Jan 1996 | JP |
9-100800 | Apr 1997 | JP |
9-287600 | Nov 1997 | JP |
10-122188 | May 1998 | JP |
11-227866 | Aug 1999 | JP |
2000-116179 | Apr 2000 | JP |
2000-201723 | Jul 2000 | JP |
2001-17358 | Jan 2001 | JP |
2001-295785 | Oct 2001 | JP |
2002-21797 | Jan 2002 | JP |
2002-138829 | May 2002 | JP |
2002-213388 | Jul 2002 | JP |
2003-329273 | Nov 2003 | JP |
2004-8275 | Jan 2004 | JP |
2004-208935 | Jul 2004 | JP |
2004-216221 | Aug 2004 | JP |
2005-201507 | Jul 2005 | JP |
2005-307985 | Nov 2005 | JP |
2006-89096 | Apr 2006 | JP |
3127331 | Nov 2006 | JP |
2007-138763 | Jun 2007 | JP |
2007-138789 | Jun 2007 | JP |
2008-39316 | Feb 2008 | JP |
2008-100204 | May 2008 | JP |
3146538 | Oct 2008 | JP |
2008-294243 | Dec 2008 | JP |
2009-44568 | Feb 2009 | JP |
2009-264121 | Nov 2009 | JP |
2010-131259 | Jun 2010 | JP |
2012-36897 | Feb 2012 | JP |
2012-57619 | Mar 2012 | JP |
2002-0061691 | Jul 2002 | KR |
2002-0067468 | Aug 2002 | KR |
10-2005-0102317 | Oct 2005 | KR |
2007-0007997 | Jan 2007 | KR |
10-2010-0055611 | May 2010 | KR |
2000-0032363 | Jun 2010 | KR |
10-0985378 | Sep 2010 | KR |
M394383 | Dec 2010 | TW |
M407299 | Jul 2011 | TW |
WO 9013478 | Nov 1990 | WO |
WO-02073096 | Sep 2002 | WO |
WO 03058795 | Jul 2003 | WO |
WO-03069931 | Aug 2003 | WO |
WO-2005050026 | Jun 2005 | WO |
WO 2005057091 | Jun 2005 | WO |
WO-2006008021 | Jan 2006 | WO |
WO-2006012526 | Feb 2006 | WO |
WO 2007024955 | Mar 2007 | WO |
WO 2007048205 | May 2007 | WO |
WO 2008014641 | Feb 2008 | WO |
WO-2008024569 | Feb 2008 | WO |
WO-2009030879 | Mar 2009 | WO |
WO-2009030881 | Mar 2009 | WO |
WO-2010100448 | Sep 2010 | WO |
WO-2010100451 | Sep 2010 | WO |
WO-2010100452 | Sep 2010 | WO |
WO-2010100453 | Sep 2010 | WO |
WO-2010100462 | Sep 2010 | WO |
Entry |
---|
Gammack, P. et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Nicolas, F. et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages. |
Fitton, et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages. |
Gammack, P. et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Gammack, P. et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages. |
Gammack et al., Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages. |
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages. |
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages. |
Gammack, P. et al., U.S. Office Action mailed Nov. 29, 2012, directed to U.S. Appl. No. 12/716,742; 9 pages. |
Cookson, M. et al., U.S. Office Action mailed Dec. 19, 2012, directed to U.S. Appl. No. 12/716,778; 8 pages. |
GB Search Report dated Dec. 8, 2010 directed GB Patent Application No. 1014831.0; 2 pages. |
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages. |
Gammack, P et al., U.S. Final Office Action mailed Jun. 21, 2011, directed to U.S. Appl. No. 12/203,698; 11 pages. |
Gammack, P. et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages. |
Gammack, P. et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 12 pages. |
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages. |
Nicolas, F. et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages. |
Fitton, et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages. |
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages. |
Gammack, P. et al., U.S. Final Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages. |
Reba, I. (1966). “Applications of the Coanda Effect,” Scientific American 214:84-92. |
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed towards U.S. Appl. No. 12/203,698; 3 pages. |
International Search Report and Written Opinion mailed Nov. 18, 2011, directed to International Patent Application No. PCT/GB2011/051566; 11 pages. |
Gammack, P. et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages. |
Gammack, P. et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages. |
Gammack, P. et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20120057959 A1 | Mar 2012 | US |