Fan

Information

  • Patent Grant
  • 9745996
  • Patent Number
    9,745,996
  • Date Filed
    Friday, October 28, 2011
    13 years ago
  • Date Issued
    Tuesday, August 29, 2017
    7 years ago
Abstract
A fan casing includes an impeller housing, a mixed-flow impeller located within the impeller housing, and a motor for driving the impeller. The impeller includes a hub connected to the motor, and a plurality of blades connected to the hub, each blade comprising a leading edge located adjacent the air inlet of the impeller housing, an inner side edge connected to and extending partially about the outer surface of the hub, an outer side edge located opposite to the inner side edge, and a blade tip located at the intersection of the leading edge and the outer side edge. The leading edge comprises an inner portion located adjacent the hub, and an outer portion located adjacent the blade tip, and wherein the inner portion is swept rearwardly from the hub to the outer portion, and the outer portion is swept forwardly from the inner portion to the blade tip.
Description
REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 USC 371 of International Application No. PCT/GB2011/052109, filed Oct. 28, 2011, which claims the priority of United Kingdom Application No. 1020419.6, filed Dec. 2, 2010, the entire contents of which are incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to a fan for creating an air current in a room. Particularly, but not exclusively, the present invention relates to a floor or table-top fan, such as a desk, tower or pedestal fan.


BACKGROUND OF THE INVENTION

A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a ‘wind chill’ or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.


WO 2010/100448 describes a fan assembly which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing a primary air flow into the base, and an annular nozzle connected to the base and comprising an annular slot through which the primary air flow is emitted from the fan. The nozzle defines a central opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow.


The impeller is in the form of a mixed flow impeller, which receives the primary air flow in an axial direction and emits the primary air flow in both axial and radial directions. The impeller comprises a generally conical hub and a plurality of blades connected to the hub. The impeller is located within an impeller housing mounted within the base of the fan. The leading edges of the blades of the impeller are located adjacent the air inlet of the impeller housing. The leading edges of the blades are rearwardly swept from the impeller hub to the blade tip. In other words, the leading edges of the blades extend rearwardly away from the air inlet of the impeller housing.


SUMMARY OF THE INVENTION

In a first aspect the present invention provides a fan for generating an air current within a room, the fan comprising a first casing comprising an air inlet through which an air flow is drawn into the fan, and a second casing connected to the first casing, the second casing comprising an air outlet from which the air flow is emitted from the fan, the first casing comprising an impeller housing having an air inlet and an air outlet, a mixed-flow impeller located within the impeller housing for drawing the air flow through the air inlet of the first casing, and a motor for driving the impeller, wherein the impeller comprises a substantially conical hub connected to the motor, and a plurality of blades connected to the hub, each blade comprising a leading edge located adjacent the air inlet of the impeller housing, a trailing edge, an inner side edge connected to and extending partially about the outer surface of the hub, an outer side edge located opposite to the inner side edge, and a blade tip located at the intersection of the leading edge and the outer side edge, and wherein the leading edge comprises an inner portion located adjacent the hub, and an outer portion located adjacent the blade tip, and wherein the inner portion is swept rearwardly from the hub to the outer portion, and the outer portion is swept forwardly from the inner portion to the blade tip.


The impeller differs from that described in WO 2010/100448 by way of the leading edge of each blade comprising an inner portion located adjacent the hub, and an outer portion located adjacent the blade tip. The inner portion is swept rearwardly from the hub to the outer portion, that is, away from the air inlet of the impeller housing, whereas the outer portion is swept forwardly from the inner portion to the blade tip, that is, towards the air inlet of the impeller housing.


This modification to the shape of the leading edge can reduce the noise generated during use of the fan in comparison to the impeller of WO 2010/100448. The localised forward sweep of the leading edge of each blade towards the blade tip can reduce the peak hub-to-tip loading of the blades, which peak is located generally at or towards the leading edges of the blades. Hub-to-tip loading is a method of analysing pressure gradients across the blade, and can be defined as:







Hub


-


to


-


tip


-


loading

=



W
t

-

W
h




(


W
t

+

W
h


)

·
0.5







where Wt is the relative velocity of the flow at the blade tip and Wh is the relative velocity of the flow at the hub. We have found that forward sweeping the leading edge of each blade can reduce the pressure gradient across the leading edge, reducing flow separation from the blade and thereby reducing noise associated with air turbulence.


However, a fully swept leading edge, that is, a leading edge which is swept forwardly from the hub to the blade tip, can increase blade-to-blade loading at the leading edge of the blade. Blade-to-blade loading is a method of analysing pressure gradients along the blade, and can be defined as:







Blade


-


to


-


blade


-


loading

=



W
ss

-

W

p





s





(


W
ss

+

W

p





s



)

·
0.5







where Wss is the relative velocity of the flow at the suction side of the blade and Wps is the relative velocity of the flow at the pressure side of the blade. We have found that the blade-to-blade loading at the leading edge of the blade can be reduced by increasing the length of the inner side edge of the blade so that the length of the inner side edge approaches that of the outer side edge, resulting in the inner portion of the leading edge being swept rearwardly from the hub to the outer portion.


Preferably, the inner portion of the leading edge extends within a range from 30 to 80%, more preferably within a range from 50 to 70%, of the length of the leading edge.


The inner portion of the leading edge is preferably convex, whereas the outer portion of the leading edge is preferably concave. However, at least part of each portion of the leading edge may be straight. For example, the inner portion of the leading edge may be straight.


Blade-to-blade loading along the length of the blade may be optimised by controlling the lean angle of each blade, that is, the angle subtended between the blade and a plane extending radially outwardly from the hub. Each blade preferably has a lean angle which varies along the length of the blade. The lean angle preferably varies between a maximum value adjacent the leading edge of the blade, and a minimum value adjacent the trailing edge of the blade. The maximum value of the lean angle is preferably positive, that is, the blade leans forward in the direction of rotation of the impeller, whereas the minimum value of the lean angle is preferably negative, that is, the blade leans backward away from the direction of rotation of the impeller. The maximum value of the lean angle is preferably in the range from 15 to 30°, and the minimum value of the lean angle is preferably in the range from −20 to −30°. The lean angle is preferably at a value of 0° at or around a part of the blade which is midway between the leading edge and the trailing edge of the blade.


The width of the blade preferably decreases gradually from the leading edge to the trailing edge. The thickness of the blade preferably also varies between a maximum value and a minimum value. The minimum value of the thickness of the blade is preferably located at the trailing edge to optimise the aerodynamic performance of the blade. The maximum value of the thickness of the blade is preferably located midway between the leading edge and the trailing edge, and this maximum value is preferably in the range from 0.9 to 1.1 mm. The trailing edge is preferably straight.


Each blade preferably extends about the hub by an angle in the range from 60 to 120°.


The number of blades is preferably in the range from six to twelve.


To increase the stiffness of the impeller, the impeller may comprise a generally frusto-conical shroud connected to the outer side edge of each blade so as to surround the hub and the blades. The provision of the shroud also prevents the blade tips from coming into contact with the impeller housing in the event that the impeller becomes mis-aligned with the impeller housing during use.


The second casing preferably extends about an opening through which air from outside the second casing is drawn by the air flow emitted from the mouth. Preferably, the second casing surrounds the opening. The second casing may be an annular second casing which preferably has a height in the range from 200 to 600 mm, more preferably in the range from 250 to 500 mm.


Preferably, the mouth of the second casing extends about the opening, and is preferably annular. The second casing may comprise an inner casing section and an outer casing section which define the mouth of the second casing. Each section is preferably formed from a respective annular member, but each section may be provided by a plurality of members connected together or otherwise assembled to form that section. The outer casing section may be shaped so as to partially overlap the inner casing section. This can enable an outlet of the mouth to be defined between overlapping portions of the external surface of the inner casing section and the internal surface of the outer casing section of the second casing.


The outlet is preferably in the form of a slot, preferably having a width in the range from 0.5 to 5 mm, more preferably in the range from 0.5 to 2 mm. The second casing may comprise a plurality of spacers for urging apart the overlapping portions of the inner casing section and the outer casing section of the second casing. This can assist in maintaining a substantially uniform outlet width about the opening. The spacers are preferably evenly spaced along the outlet.


The second casing preferably comprises an interior passage for receiving the air flow from the stand. The interior passage is preferably annular, and is preferably shaped to divide the air flow into two air streams which flow in opposite directions around the opening. The interior passage is preferably also defined by the inner casing section and the outer casing section of the second casing.


The second casing may comprise a surface, preferably a Coanda surface, located adjacent the mouth and over which the mouth is arranged to direct the air flow emitted therefrom. Preferably, the external surface of the inner casing section of the second casing is shaped to define the Coanda surface. The Coanda surface preferably extends about the opening. A Coanda surface is a known type of surface over which fluid flow exiting an output orifice close to the surface exhibits the Coanda effect. The fluid tends to flow over the surface closely, almost ‘clinging to’ or ‘hugging’ the surface. The Coanda effect is already a proven, well documented method of entrainment in which a primary air flow is directed over a Coanda surface. A description of the features of a Coanda surface, and the effect of fluid flow over a Coanda surface, can be found in articles such as Reba, Scientific American, Volume 214, June 1966 pages 84 to 92. Through use of a Coanda surface, an increased amount of air from outside the fan assembly is drawn through the opening by the air emitted from the mouth.


Preferably, an air flow enters the second casing of the fan assembly from the first casing. In the following description this air flow will be referred to as primary air flow. The primary air flow is emitted from the mouth of the second casing and preferably passes over a Coanda surface. The primary air flow entrains air surrounding the mouth of the second casing, which acts as an air amplifier to supply both the primary air flow and the entrained air to the user. The entrained air will be referred to here as a secondary air flow. The secondary air flow is drawn from the room space, region or external environment surrounding the mouth of the second casing and, by displacement, from other regions around the fan assembly, and passes predominantly through the opening defined by the second casing. The primary air flow directed over the Coanda surface combined with the entrained secondary air flow equates to a total air flow emitted or projected forward from the opening defined by the second casing. Preferably, the entrainment of air surrounding the mouth of the second casing is such that the primary air flow is amplified by at least five times, more preferably by at least ten times, while a smooth overall output is maintained.


Preferably, the second casing comprises a diffuser surface located downstream of the Coanda surface. The external surface of the inner casing section of the second casing is preferably shaped to define the diffuser surface.


The impeller may be provided in isolation from the remaining features of the fan, for example for replacement of an existing impeller, and so in a second aspect the present invention provides an impeller, preferably for a fan, comprising a substantially conical hub, and a plurality of blades connected to the hub, each blade comprising a leading edge, a trailing edge, an inner side edge connected to and extending partially about the outer surface of the hub, an outer side edge located opposite to the inner side edge, and a blade tip located at the intersection of the leading edge and the outer side edge, and wherein the leading edge comprises an inner portion located adjacent the hub, and an outer portion located adjacent the blade tip, and wherein the inner portion is swept rearwardly from the hub to the outer portion, and the outer portion is swept forwardly from the inner portion to the blade tip.


Features described above in connection with the first aspect of the invention are equally applicable to the second aspect of the invention, and vice versa.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 is a front view of a fan;



FIG. 2 is a front perspective view, from above, of the upper casing of the fan;



FIG. 3 is a top view of the fan;



FIG. 4 is a side sectional view of the lower casing of the fan, taken along line A-A in FIG. 3;



FIG. 5 is a top view of the impeller housing and motor housing of the lower casing;



FIG. 6 is a side sectional view taken along line A-A in FIG. 5;



FIG. 7 is a front perspective view, from above, of the hub and blades of the impeller of the lower casing of the fan;



FIG. 8 is a top view of the hub and blades of the impeller;



FIG. 9 is a side view of the hub and blades of the impeller;



FIG. 10 is a side sectional view taken along line A-A in FIG. 8; and



FIG. 11 is a top sectional view taken along line B-B in FIG. 9.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a front view of a fan 10. The fan comprises a lower casing which in this example is in the form of a body 12 having an air inlet 14 in the form of a plurality of apertures formed in the outer surface 16 of the body 12, and through which a primary air flow is drawn into the body 12 from the external environment. An upper, annular casing 18 having an air outlet 20 for emitting the primary air flow from the fan 10 is connected to the body 12. The body 12 further comprises a user interface for allowing a user to control the operation of the fan 10. The user interface comprises a plurality of user-operable buttons 22, 24 and a user-operable dial 26.


As also shown in FIG. 2, the upper casing 18 comprises an annular outer casing section 28 connected to and extending about an annular inner casing section 30. The annular sections 28, 30 of the upper casing 18 extend about and define an opening 32. Each of these sections may be formed from a plurality of connected parts, but in this embodiment each of the outer casing section 28 and the inner casing section 30 is formed from a respective, single moulded part. During assembly, the outer casing section 28 is inserted into a slot located at the front of the inner casing section 30. The outer and inner casing sections 28, 30 may be connected together using an adhesive introduced to the slot. The outer casing section 28 comprises a base 34 which is connected to the open upper end of the body 12, and which has an open lower end for receiving the primary air flow from the body 12.


The outer casing section 28 and the inner casing section 30 together define an annular interior passage 35 (shown in FIG. 4) for conveying the primary air flow to the air outlet 20. The interior passage 35 is bounded by the internal surface of the outer casing section 28 and the internal surface of the inner casing section 30. The base 34 of the outer casing section 28 is shaped to convey the primary air flow into the interior passage 35 of the upper casing 18.


The air outlet 20 is located towards the rear of the upper casing 18, and is arranged to emit the primary air flow towards the front of the fan 10, through the opening 32. The air outlet 20 extends at least partially about the opening 32, and preferably surrounds the opening 32. The air outlet 20 is defined by overlapping, or facing, portions of the internal surface of the outer casing section 28 and the external surface of the inner casing section 30, respectively, and is in the form of an annular slot, preferably having a relatively constant width in the range from 0.5 to 5 mm. In this example the air outlet has a width of around 1 mm. Spacers may be spaced about the air outlet 20 for urging apart the overlapping portions of the outer casing section 28 and the inner casing section 30 to maintain the width of the air outlet 20 at the desired level. These spacers may be integral with either the outer casing section 28 or the inner casing section 30.


The air outlet 20 is shaped to direct the primary air flow over the external surface of the inner casing section 30. The external surface of the inner casing section 30 comprises a Coanda surface 36 located adjacent the air outlet 20 and over which the air outlet 20 directs the air emitted from the fan 10, a diffuser surface 38 located downstream of the Coanda surface 36 and a guide surface 40 located downstream of the diffuser surface 38. The diffuser surface 38 is arranged to taper away from the central axis X of the opening 32 in such a way so as to assist the flow of air emitted from the fan 10. The angle subtended between the diffuser surface 38 and the central axis X of the opening 32 is in the range from 5 to 25°, and in this example is around 15°. The guide surface 40 is angled inwardly relative to the diffuser surface 38 to channel the air flow back towards the central axis X. The guide surface 40 is preferably arranged substantially parallel to the central axis X of the opening 32 to present a substantially flat and substantially smooth face to the air flow emitted from the air outlet 20. A visually appealing tapered surface 42 is located downstream from the guide surface 40, terminating at a tip surface 44 lying substantially perpendicular to the central axis X of the opening 32. The angle subtended between the tapered surface 42 and the central axis X of the opening 32 is preferably around 45°.



FIG. 4 illustrates a side sectional view through the body 12 of the fan 10. The body 12 comprises a substantially cylindrical main body section 50 mounted on a substantially cylindrical lower body section 52. The main body section 50 and the lower body section 52 are preferably formed from plastics material. The main body section 50 and the lower body section 52 preferably have substantially the same external diameter so that the external surface of the upper body section 50 is substantially flush with the external surface of the lower body section 52.


The main body section 50 comprises the air inlet 14 through which the primary air flow enters the fan assembly 10. In this embodiment the air inlet 14 comprises an array of apertures formed in the main body section 50. Alternatively, the air inlet 14 may comprise one or more grilles or meshes mounted within windows formed in the main body section 50. The main body section 50 is open at the upper end (as illustrated) thereof to provide an air outlet 54 through which the primary air flow is exhausted from the body 12.


The main body section 50 may be tilted relative to the lower body section 52 to adjust the direction in which the primary air flow is emitted from the fan assembly 10. For example, the upper surface of the lower body section 52 and the lower surface of the main body section 50 may be provided with interconnecting features which allow the main body section 50 to move relative to the lower body section 52 while preventing the main body section 50 from being lifted from the lower body section 52. For example, the lower body section 52 and the main body section 50 may comprise interlocking L-shaped members.


The lower body section 52 is mounted on a base 56 for engaging a surface on which the fan assembly 10 is located. The lower body section 52 comprises the aforementioned user interface and a control circuit, indicated generally at 58, for controlling various functions of the fan 10 in response to operation of the user interface. The lower body section 52 also houses a mechanism for oscillating the lower body section 52 relative to the base 56. The operation of the oscillation mechanism is controlled by the control circuit 58 in response to the user's depression of the button 24 of the user interface. The range of each oscillation cycle of the lower body section 52 relative to the base 56 is preferably between 60° and 120°, and the oscillation mechanism is arranged to perform around 3 to 5 oscillation cycles per minute. A mains power cable (not shown) for supplying electrical power to the fan 10 extends through an aperture formed in the base 56.


The main body section 50 houses an impeller 60 for drawing the primary air flow through the air inlet 14 and into the body 12. The impeller 60 is a mixed flow impeller. The impeller 60 is connected to a rotary shaft 62 extending outwardly from a motor 64. In this embodiment, the motor 64 is a DC brushless motor having a speed which is variable by the control circuit 58 in response to user manipulation of the dial 26. The maximum speed of the motor 64 is preferably in the range from 5,000 to 10,000 rpm.


With reference also to FIGS. 5 and 6, the motor 64 is housed within a motor housing. The motor housing comprises a lower section 66 which supports the motor 64, and an upper section 68 connected to the lower section 66. The shaft 62 protrudes through an aperture formed in the lower section 66 of the motor housing to allow the impeller 60 to be connected to the shaft 62. The upper section 68 of the motor housing comprises an annular diffuser 70 having a plurality of blades for receiving the primary air flow exhausted from the impeller 64 and for guiding the air flow to the air outlet 54 of the main body section 50.


The motor housing is supported within the main body section 50 by an impeller housing 72. The diffuser 70 comprises an outer annular member 74 which extends about the blades of the diffuser 70, and which is integral with the upper section 68 of the motor housing. The annular member 74 is supported by an annular support surface 76 located on an inner surface of the impeller housing 72.


The impeller housing 72 is generally frusto-conical in shape, and comprises a circular air inlet 78 at the relatively small, lower end thereof (as illustrated) for receiving the primary air flow, and an annular air outlet 80 at the relatively large, upper end thereof (as illustrated), and within which the diffuser 70 is located when the motor housing is supported within the impeller housing 72. An annular inlet member 82 is connected to the outer surface of the impeller housing 72 for guiding the primary air flow towards the air inlet 78 of the impeller housing 72.


The impeller 60 comprises a generally conical hub 84, a plurality of impeller blades 86 connected to the hub 84, and a generally frusto-conical shroud 88 connected to the blades 86 so as to surround the hub 84 and the blades 86. The blades 86 are preferably integral with the hub 84, which is preferably formed from plastics material. The thickness x1 of the hub 84 is in the range from 1 to 3 mm. The hub 84 has a conical inner surface which has a similar shape to that of the outer surface of the lower section 66 of the motor housing. The hub 84 is spaced from the motor housing by a distance x2 which is also in the range from 1 to 3 mm.


The hub 84 and the blades 86 of the impeller 60 are illustrated in more detail in FIGS. 7 to 11. In this example the impeller 60 comprises nine blades 86. Each blade 86 extends partially about the hub 84 by an angle in the range from 60 to 120°, and in this example each blade 86 extends about the hub 84 by an angle of around 105°. Each blade 86 has an inner side edge 90 which is connected to the hub 84, and an outer side edge 92 located opposite to the inner side edge 90. Each blade 86 also has a leading edge 94 located adjacent the air inlet 78 of the impeller housing 72, a trailing edge 96 located at the opposite end of the blade 86 to the leading edge 90, and a blade tip 98 located at the intersection of the leading edge 94 and the outer side edge 92.


The length of each side edge 90, 92 is greater than the lengths of the leading edge 94 and the trailing edge 96. The length of the outer side edge 92 is preferably in the range from 70 to 90 mm, and in this example is around 80 mm. The length of the leading edge 94 is preferably in the range from 15 to 30 mm, and in this example is around 20 mm. The length of the trailing edge 96 is preferably in the range from 5 to 15 mm, and in this example is around 10 mm. The width of the blade 86 decreases gradually from the leading edge 94 to the trailing edge 96.


The trailing edge 96 of each blade 86 is preferably straight. The leading edge 94 of each blade 86 comprises an inner portion 100 located adjacent the hub 84, and an outer portion 102 located adjacent the blade tip 98. The inner portion 100 of the leading edge 94 extends within a range from 30 to 80% of the length of the leading edge 94. In this example the inner portion 100 is longer than the outer portion 102, extending within a range from 50 to 70% of the length of the leading edge 94.


The shape of the blades 86 is designed to minimise noise generated during the rotation of the impeller 64 by reducing pressure gradients across parts of the blades 86. The reduction of these pressure gradients can reduce the tendency for the primary air flow to separate from the blades 86, and thus reduce turbulence within the air flow.


The outer portion 102 of the leading edge 94 is swept forwardly from the inner portion 100 to the blade tip 98. This localised forward sweep of the leading edge 94 of each blade 86 towards the blade tip 98 can reduce the peak hub-to-tip loading of the blades 86. The outer portion 102 is concave in shape, curving forwardly from the inner portion 100 to the blade tip 98. To reduce blade-to-blade loading of the blades 86, the inner portion 100 is swept rearwardly from the hub 86 to the outer portion 102 so that the length of the inner side edge 90 approaches that of the outer side edge 92. In this example the inner portion 100 of the leading edge 94 is convex in shape, curving rearwardly from the hub 84 to the outer portion 102 of the leading edge 94 to maximise the length of the inner side edge 90.


Blade-to-blade loading along the length of each blade 86 is reduced by controlling the lean angle of each blade 86, that is, the angle subtended between the blade 86 and a plane extending radially outwardly from the hub 84. Each blade 86 has a lean angle which varies along the length of the blade 86 from a maximum value adjacent the leading edge 94 of the blade 86 to a minimum value adjacent the trailing edge 96 of the blade 86. The lean angle is preferably positive at the leading edge 94 so that the blade 86 leans forward in the direction of rotation of the impeller 60 at the leading edge 94, whereas the lean angle is preferably negative at the trailing edge 96 so that the blade 86 leans backward away from the direction of rotation of the impeller 60. This is illustrated in FIG. 9. The maximum value of the lean angle is preferably in the range from 15 to 30°, and in this example is around 20°, and the minimum value of the lean angle is preferably in the range from −20 to −30°, and in this example is around −25°. The lean angle is at a value of 0° at or around a part of the blade 86 which is midway between the leading edge 94 and the trailing edge 96.


To minimise blade-to-blade loading at the trailing edge 96 of each blade 86, the thickness of the blade is preferably at a minimum value at the trailing edge 96. The maximum value of the thickness of the blade 86 is preferably located midway between the leading edge 94 and the trailing edge 96, and this maximum value is preferably in the range from 0.9 to 1.1 mm. In this example, this maximum value is around 1 mm. The minimum thickness is preferably in the range from 0.2 to 0.8 mm. The thickness of the blade 86 at the leading edge 94 is preferably between these maximum and minimum values. The variation in the thickness of the blades 86 along their length can be seen in FIG. 10.


Returning to FIG. 4, a plurality of rubber mounts 108 are connected to the impeller housing 72. These mounts 108 are located on a respective support 110 located within and connected to the main body section 50 of the base 12 when the impeller housing 72 is located within the base 12. An electrical cable 112 passes from the main control circuit 58 to the motor 64 through apertures formed in the main body section 50 and the lower body section 52 of the body 12, and in the impeller housing 72 and the motor bucket.


Preferably, the body 12 includes silencing foam for reducing noise emissions from the body 12. In this embodiment, the main body section 50 of the body 12 comprises a first foam member 114 located beneath the air inlet 14, and a second annular foam member 116 located within the motor bucket.


To operate the fan 10 the user presses button 22 of the user interface, in response to which the control circuit 58 activates the motor 64 to rotate the impeller 60. The rotation of the impeller 60 causes a primary air flow to be drawn into the body 12 through the air inlet 14. The user may control the speed of the motor 64, and therefore the rate at which air is drawn into the body 12 through the air inlet 14, by manipulating the dial 26. Depending on the speed of the motor 64, the primary air flow generated by the impeller 60 may be between 20 and 30 liters per second. The primary air flow passes sequentially through the impeller housing 72, and through the diffuser 70, before passing through the air outlet 54 of the body 12 and into the upper casing 18. The pressure of the primary air flow at the air outlet 54 of the body 12 may be at least 150 Pa, and is preferably in the range from 250 to 1.5 kPa.


Within the upper casing 18, the primary air flow is divided into two air streams which pass in opposite directions around the opening 32 of the casing 14. As the air streams pass through the interior passage 35, air is emitted through the air outlet 20. The primary air flow emitted from the air outlet 20 is directed over the Coanda surface 36 of the upper casing 18, causing a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the air outlet 20 and from around the rear of the upper casing 18. This secondary air flow passes through the central opening 32 of the upper casing 18, where it combines with the primary air flow to produce a total air flow, or air current, projected forward from the upper casing 18.

Claims
  • 1. A fan for generating an air current within a room, the fan comprising: a first casing comprising an air inlet through which an air flow is drawn into the fan, and a second casing connected to the first casing, the second casing comprising an air outlet from which the air flow is emitted from the fan, the first casing comprising:an impeller housing having an air inlet and an air outlet;a mixed-flow impeller located within the impeller housing for drawing the air flow through the air inlet of the first casing; anda motor for driving the impeller;wherein the impeller comprises a substantially conical hub connected to the motor, and a plurality of blades connected to the hub, each blade comprising a leading edge located adjacent the air inlet of the impeller housing, a trailing edge, an inner side edge connected to and extending partially about an outer surface of the hub, an outer side edge located opposite to the inner side edge, and a blade tip located at the intersection of the leading edge and the outer side edge;and wherein the leading edge comprises an inner portion located adjacent the hub, and an outer portion located adjacent the blade tip, and wherein the inner portion is swept rearwardly from the hub to the outer portion away from a direction of rotation of the impeller, and the outer portion is swept forwardly from the inner portion to the blade tip toward the direction of rotation of the impeller.
  • 2. The fan of claim 1, wherein the inner portion of the leading edge extends within a range from 30 to 80% of a length of the leading edge.
  • 3. The fan of claim 1, wherein the inner portion of the leading edge extends within a range from 50 to 70% of a length of the leading edge.
  • 4. The fan of claim 1, wherein the inner portion of the leading edge is convex.
  • 5. The fan of claim 1, wherein the outer portion of the leading edge is concave.
  • 6. The fan of claim 1, wherein each blade has a lean angle which varies along a length of the blade, wherein the lean angle is the angle subtended between the blade and a plane extending radially outwardly from the hub.
  • 7. The fan of claim 6, wherein the lean angle varies between a maximum value adjacent the leading edge of the blade, and a minimum value adjacent the trailing edge of the blade.
  • 8. The fan of claim 7, wherein the maximum value of the lean angle is in the range from 15 to 30°, and the minimum value of the lean angle is in the range from −20 to −30°.
  • 9. The fan of claim 1, wherein a width of the blade decreases gradually from the leading edge to the trailing edge.
  • 10. The fan of claim 1, wherein a thickness of the blade varies between a maximum value and a minimum value.
  • 11. The fan of claim 10, wherein the minimum value of the thickness of the blade is at the trailing edge.
  • 12. The fan of claim 10, wherein the maximum value of the thickness of the blade is located midway between the leading edge and the trailing edge.
  • 13. The fan of claim 1, wherein the trailing edge is straight.
  • 14. The fan of claim 1, wherein each blade extends about the hub by an angle in the range from 60 to 120°.
  • 15. The fan of claim 1, wherein the number of blades is in the range from six to twelve.
  • 16. The fan of claim 1, wherein the impeller comprises a generally frusto-conical shroud connected to the outer side edge of each blade so as to surround the hub and the blades.
Priority Claims (1)
Number Date Country Kind
1020419.6 Dec 2010 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2011/052109 10/28/2011 WO 00 7/17/2013
Publishing Document Publishing Date Country Kind
WO2012/072996 6/7/2012 WO A
US Referenced Citations (237)
Number Name Date Kind
1357261 Svoboda Nov 1920 A
1767060 Ferguson Jun 1930 A
1896869 Larsh Feb 1933 A
2014185 Martin Sep 1935 A
2035733 Wall Mar 1936 A
D103476 Weber Mar 1937 S
2115883 Sher May 1938 A
D115344 Chapman Jun 1939 S
2210458 Keilholtz Aug 1940 A
2258961 Saathoff Oct 1941 A
2336295 Reimuller Dec 1943 A
2433795 Stokes Dec 1947 A
2473325 Aufiero Jun 1949 A
2476002 Stalker Jul 1949 A
2488467 De Lisio Nov 1949 A
2510132 Morrison Jun 1950 A
2544379 Davenport Mar 1951 A
2547448 Demuth Apr 1951 A
2583374 Hoffman Jan 1952 A
2620127 Radcliffe Dec 1952 A
2765977 Morrison Oct 1956 A
2808198 Morrison Oct 1957 A
2813673 Smith Nov 1957 A
2830779 Wentling Apr 1958 A
2838229 Belanger Jun 1958 A
2922277 Bertin Jan 1960 A
2922570 Allen Jan 1960 A
3004403 Laporte Oct 1961 A
3047208 Coanda Jul 1962 A
3270655 Guirl et al. Sep 1966 A
D206973 De Lisio Feb 1967 S
3339867 Bayless Sep 1967 A
3444817 Caldwell May 1969 A
3503138 Fuchs et al. Mar 1970 A
3518776 Wolff et al. Jul 1970 A
3724092 McCleerey Apr 1973 A
3743186 Mocarski Jul 1973 A
3795367 Mocarski Mar 1974 A
3872916 Beck Mar 1975 A
3875745 Franklin Apr 1975 A
3885891 Throndson May 1975 A
3943329 Hlavac Mar 1976 A
4037991 Taylor Jul 1977 A
4046492 Inglis Sep 1977 A
4061188 Beck Dec 1977 A
4073613 Desty Feb 1978 A
4113416 Kataoka et al. Sep 1978 A
4136735 Beck et al. Jan 1979 A
4173995 Beck Nov 1979 A
4180130 Beck et al. Dec 1979 A
4184541 Beck et al. Jan 1980 A
4192461 Arborg Mar 1980 A
4332529 Alperin Jun 1982 A
4336017 Desty Jun 1982 A
4342204 Melikian et al. Aug 1982 A
4448354 Reznick et al. May 1984 A
4502837 Blair et al. Mar 1985 A
4568243 Schubert et al. Feb 1986 A
4630475 Mizoguchi Dec 1986 A
4643351 Fukamachi et al. Feb 1987 A
4653976 Blair Mar 1987 A
4703152 Shih-Chin Oct 1987 A
4718870 Watts Jan 1988 A
4732539 Shin-Chin Mar 1988 A
4737077 Vera Apr 1988 A
4790133 Stuart Dec 1988 A
4850804 Huang Jul 1989 A
4878620 Tarleton Nov 1989 A
4893990 Tomohiro et al. Jan 1990 A
4978281 Conger Dec 1990 A
5061405 Stanek et al. Oct 1991 A
D325435 Coup et al. Apr 1992 S
5168722 Brock Dec 1992 A
5176856 Takahashi et al. Jan 1993 A
5188508 Scott et al. Feb 1993 A
5296769 Havens et al. Mar 1994 A
5310313 Chen May 1994 A
5317815 Hwang Jun 1994 A
5402938 Sweeney Apr 1995 A
5407324 Starnes, Jr. et al. Apr 1995 A
5425902 Miller et al. Jun 1995 A
5518370 Wang et al. May 1996 A
5609473 Litvin Mar 1997 A
5645769 Tamaru et al. Jul 1997 A
5649370 Russo Jul 1997 A
5685696 Zangeneh Nov 1997 A
5730582 Heitmann Mar 1998 A
5735683 Muschelknautz Apr 1998 A
5762034 Foss Jun 1998 A
5762661 Kleinberger et al. Jun 1998 A
5783117 Byassee et al. Jul 1998 A
D398983 Keller et al. Sep 1998 S
5841080 Iida et al. Nov 1998 A
5843344 Junket et al. Dec 1998 A
5862037 Behl Jan 1999 A
5868197 Potier Feb 1999 A
5881685 Foss et al. Mar 1999 A
D415271 Feer Oct 1999 S
6015274 Bias et al. Jan 2000 A
6056518 Allen et al. May 2000 A
6065936 Shingai et al. May 2000 A
6073881 Chen Jun 2000 A
6082969 Carroll et al. Jul 2000 A
D429808 Krauss et al. Aug 2000 S
6123618 Day Sep 2000 A
6155782 Hsu Dec 2000 A
D435899 Melwani Jan 2001 S
6254337 Arnold Jul 2001 B1
6269549 Carlucci et al. Aug 2001 B1
6278248 Hong et al. Aug 2001 B1
6282746 Schleeter Sep 2001 B1
6293121 Labrador Sep 2001 B1
6321034 Jones-Lawlor et al. Nov 2001 B2
6338610 Harada et al. Jan 2002 B1
6348106 Embree et al. Feb 2002 B1
6386845 Bedard May 2002 B1
6454527 Nishiyama et al. Sep 2002 B2
6480672 Rosenzweig et al. Nov 2002 B1
6511288 Gatley, Jr. Jan 2003 B1
6599088 Stagg Jul 2003 B2
D485895 Melwani Jan 2004 S
6709236 Hoelzer Mar 2004 B1
6752711 Yeung Jun 2004 B1
6789787 Stutts Sep 2004 B2
6830433 Birdsell et al. Dec 2004 B2
7059826 Lasko Jun 2006 B2
7088913 Verhoorn et al. Aug 2006 B1
7147336 Chou Dec 2006 B1
D539414 Russak et al. Mar 2007 S
7186075 Winkler et al. Mar 2007 B2
7189053 Winkler et al. Mar 2007 B2
7241214 Sixsmith Jul 2007 B2
7317267 Schmid et al. Jan 2008 B2
7455504 Hill et al. Nov 2008 B2
7478993 Hong et al. Jan 2009 B2
7540474 Huang et al. Jun 2009 B1
D598532 Dyson et al. Aug 2009 S
D602143 Gammack et al. Oct 2009 S
D602144 Dyson et al. Oct 2009 S
D605748 Gammack et al. Dec 2009 S
7664377 Liao Feb 2010 B2
D614280 Dyson et al. Apr 2010 S
7775848 Auerbach Aug 2010 B1
7806388 Junkel et al. Oct 2010 B2
7921962 Liddell Apr 2011 B2
8033783 Ishikawa et al. Oct 2011 B2
8092166 Nicolas et al. Jan 2012 B2
8430624 Cookson et al. Apr 2013 B2
8469658 Gammack et al. Jun 2013 B2
20020015640 Nishiyama et al. Feb 2002 A1
20020106547 Sugawara et al. Aug 2002 A1
20030059307 Moreno et al. Mar 2003 A1
20030171093 Gumucio Del Pozo Sep 2003 A1
20030228226 Higashimori Dec 2003 A1
20040022631 Birdsell et al. Feb 2004 A1
20040049842 Prehodka Mar 2004 A1
20040149881 Allen Aug 2004 A1
20050031448 Lasko et al. Feb 2005 A1
20050053465 Roach et al. Mar 2005 A1
20050069407 Winkler et al. Mar 2005 A1
20050128698 Huang Jun 2005 A1
20050132529 Davidshofer Jun 2005 A1
20050163670 Alleyne et al. Jul 2005 A1
20050173997 Schmid et al. Aug 2005 A1
20050276684 Huang et al. Dec 2005 A1
20050281672 Parker et al. Dec 2005 A1
20060172682 Orr et al. Aug 2006 A1
20060199515 Lasko et al. Sep 2006 A1
20070035189 Matsumoto Feb 2007 A1
20070041857 Fleig Feb 2007 A1
20070048159 DiMatteo et al. Mar 2007 A1
20070059179 Xu Mar 2007 A1
20070065280 Fok Mar 2007 A1
20070166160 Russak et al. Jul 2007 A1
20070176502 Kasai et al. Aug 2007 A1
20070224044 Hong et al. Sep 2007 A1
20070269323 Zhou et al. Nov 2007 A1
20080020698 Spaggiari Jan 2008 A1
20080152482 Patel Jun 2008 A1
20080166224 Giffin Jul 2008 A1
20080286130 Purvines Nov 2008 A1
20080304986 Kenyon et al. Dec 2008 A1
20080314250 Cowie et al. Dec 2008 A1
20090026850 Fu Jan 2009 A1
20090039805 Tang Feb 2009 A1
20090060710 Gammack et al. Mar 2009 A1
20090060711 Gammack et al. Mar 2009 A1
20090191054 Winkler Jul 2009 A1
20090214341 Craig Aug 2009 A1
20100150699 Nicolas et al. Jun 2010 A1
20100162011 Min Jun 2010 A1
20100171465 Seal et al. Jul 2010 A1
20100189557 Broom Jul 2010 A1
20100219013 Liddell Sep 2010 A1
20100225012 Fitton et al. Sep 2010 A1
20100226749 Gammack et al. Sep 2010 A1
20100226750 Gammack Sep 2010 A1
20100226751 Gammack et al. Sep 2010 A1
20100226752 Gammack et al. Sep 2010 A1
20100226753 Dyson Sep 2010 A1
20100226754 Hutton et al. Sep 2010 A1
20100226758 Cookson et al. Sep 2010 A1
20100226763 Gammack et al. Sep 2010 A1
20100226764 Gammack et al. Sep 2010 A1
20100226769 Helps Sep 2010 A1
20100226771 Crawford et al. Sep 2010 A1
20100226787 Gammack et al. Sep 2010 A1
20100226797 Fitton et al. Sep 2010 A1
20100226801 Gammack Sep 2010 A1
20100254800 Fitton et al. Oct 2010 A1
20110002775 Ma et al. Jan 2011 A1
20110058935 Gammack et al. Mar 2011 A1
20110097194 Schick et al. Apr 2011 A1
20110110805 Gammack et al. May 2011 A1
20110164959 Fitton et al. Jul 2011 A1
20110223014 Crawford et al. Sep 2011 A1
20110223015 Gammack et al. Sep 2011 A1
20120031509 Wallace et al. Feb 2012 A1
20120033952 Wallace et al. Feb 2012 A1
20120034108 Wallace et al. Feb 2012 A1
20120039705 Gammack Feb 2012 A1
20120045315 Gammack Feb 2012 A1
20120045316 Gammack Feb 2012 A1
20120057959 Hodgson et al. Mar 2012 A1
20120082561 Gammack et al. Apr 2012 A1
20120093629 Fitton et al. Apr 2012 A1
20120093630 Fitton et al. Apr 2012 A1
20120114513 Simmonds et al. May 2012 A1
20120230658 Fitton et al. Sep 2012 A1
20130011252 Crawford et al. Jan 2013 A1
20130045084 Tu et al. Feb 2013 A1
20130189083 Atkinson Jul 2013 A1
20130309065 Johnson et al. Nov 2013 A1
20130309066 Atkinson et al. Nov 2013 A1
20130309080 Johnson et al. Nov 2013 A1
20130323025 Crawford et al. Dec 2013 A1
20140017069 Peters Jan 2014 A1
Foreign Referenced Citations (226)
Number Date Country
201100923 Sep 2011 AU
560119 Aug 1957 BE
1055344 May 1979 CA
2155482 Sep 1996 CA
346643 May 1960 CH
2085866 Oct 1991 CN
2111392 Jul 1992 CN
2228996 Jun 1996 CN
1232143 Oct 1999 CN
1288506 Mar 2001 CN
1336482 Feb 2002 CN
1437300 Aug 2003 CN
2650005 Oct 2004 CN
2713643 Jul 2005 CN
1680727 Oct 2005 CN
2833197 Nov 2006 CN
101046318 Oct 2007 CN
201180678 Jan 2009 CN
201221477 Apr 2009 CN
201281416 Jul 2009 CN
201349269 Nov 2009 CN
101749288 Jun 2010 CN
201502549 Jun 2010 CN
101816534 Sep 2010 CN
101825095 Sep 2010 CN
101825102 Sep 2010 CN
201568337 Sep 2010 CN
101936310 Jan 2011 CN
101984299 Mar 2011 CN
101985948 Mar 2011 CN
201763705 Mar 2011 CN
201763706 Mar 2011 CN
201770513 Mar 2011 CN
201779080 Mar 2011 CN
201802648 Apr 2011 CN
102095236 Jun 2011 CN
102305220 Jan 2012 CN
102367813 Mar 2012 CN
202165330 Mar 2012 CN
1 291 090 Mar 1969 DE
24 51 557 May 1976 DE
27 48 724 May 1978 DE
3644567 Jul 1988 DE
41 27 134 Feb 1993 DE
195 10 397 Sep 1996 DE
197 12 228 Oct 1998 DE
100 00 400 Mar 2001 DE
10041805 Jun 2002 DE
10 2009 007 037 Aug 2010 DE
10 2009 044 349 May 2011 DE
0 044 494 Jan 1982 EP
0186581 Jul 1986 EP
0 837 245 Apr 1998 EP
0 955 469 Nov 1999 EP
1 094 224 Apr 2001 EP
1 138 954 Oct 2001 EP
1 566 548 Aug 2005 EP
1 779 745 May 2007 EP
1 939 456 Jul 2008 EP
1 980 432 Oct 2008 EP
2 000 675 Dec 2008 EP
2191142 Jun 2010 EP
1033034 Jul 1953 FR
1119439 Jun 1956 FR
1387334 Jan 1965 FR
2 534 983 Apr 1984 FR
2 640 857 Jun 1990 FR
2 658 593 Aug 1991 FR
2794195 Dec 2000 FR
2 874 409 Feb 2006 FR
2 906 980 Apr 2008 FR
22235 Jun 1914 GB
383498 Nov 1932 GB
593828 Oct 1947 GB
601222 Apr 1948 GB
633273 Dec 1949 GB
641622 Aug 1950 GB
661747 Nov 1951 GB
863 124 Mar 1961 GB
1067956 May 1967 GB
1 262 131 Feb 1972 GB
1 265 341 Mar 1972 GB
1 278 606 Jun 1972 GB
1 304 560 Jan 1973 GB
1 403 188 Aug 1975 GB
1 434 226 May 1976 GB
1 501 473 Feb 1978 GB
2 094 400 Sep 1982 GB
2 107 787 May 1983 GB
2 111 125 Jun 1983 GB
2 178 256 Feb 1987 GB
2 185 531 Jul 1987 GB
2 185 533 Jul 1987 GB
2 218 196 Nov 1989 GB
2 236 804 Apr 1991 GB
2 237 323 May 1991 GB
2 240 268 Jul 1991 GB
2 242 935 Oct 1991 GB
2 285 504 Jul 1995 GB
2 289 087 Nov 1995 GB
2383277 Jun 2003 GB
2 428 569 Feb 2007 GB
2 452 490 Mar 2009 GB
2 452 593 Mar 2009 GB
2463698 Mar 2010 GB
2464736 Apr 2010 GB
2466058 Jun 2010 GB
2468312 Sep 2010 GB
2468313 Sep 2010 GB
2468315 Sep 2010 GB
2468319 Sep 2010 GB
2468320 Sep 2010 GB
2468323 Sep 2010 GB
2468328 Sep 2010 GB
2468331 Sep 2010 GB
2468369 Sep 2010 GB
2473037 Mar 2011 GB
2479760 Oct 2011 GB
2482547 Feb 2012 GB
31-13055 Aug 1956 JP
35-4369 Mar 1960 JP
39-7297 Mar 1964 JP
49-150403 Dec 1974 JP
51-7258 Jan 1976 JP
53-51608 May 1978 JP
53-60100 May 1978 JP
56-167897 Dec 1981 JP
57-71000 May 1982 JP
57-157097 Sep 1982 JP
59-90797 May 1984 JP
59-167984 Nov 1984 JP
60-105896 Jul 1985 JP
61-31830 Feb 1986 JP
61-116093 Jun 1986 JP
61-280787 Dec 1986 JP
62-223494 Oct 1987 JP
63-179198 Jul 1988 JP
63-306340 Dec 1988 JP
64-21300 Feb 1989 JP
64-83884 Mar 1989 JP
1-138399 May 1989 JP
1-224598 Sep 1989 JP
2-146294 Jun 1990 JP
2-211400 Aug 1990 JP
2-218890 Aug 1990 JP
2-248690 Oct 1990 JP
3-3419 Jan 1991 JP
3-52515 May 1991 JP
3-267598 Nov 1991 JP
4-43895 Feb 1992 JP
4-366330 Dec 1992 JP
5-157093 Jun 1993 JP
5-164089 Jun 1993 JP
5-263786 Oct 1993 JP
6-74190 Mar 1994 JP
6-86898 Mar 1994 JP
6-147188 May 1994 JP
6-257591 Sep 1994 JP
6-280800 Oct 1994 JP
6-336113 Dec 1994 JP
7-190443 Jul 1995 JP
7-247991 Sep 1995 JP
8-21400 Jan 1996 JP
9-100800 Apr 1997 JP
9-287600 Nov 1997 JP
10-122188 May 1998 JP
11-227866 Aug 1999 JP
2000-116179 Apr 2000 JP
2000-201723 Jul 2000 JP
2001-17358 Jan 2001 JP
2001-140796 May 2001 JP
2001-295785 Oct 2001 JP
2002-21797 Jan 2002 JP
2002-138829 May 2002 JP
2002-213388 Jul 2002 JP
2002-371998 Dec 2002 JP
2003-329273 Nov 2003 JP
2004-8275 Jan 2004 JP
2004-208935 Jul 2004 JP
2004-216221 Aug 2004 JP
2005-201507 Jul 2005 JP
2005-307985 Nov 2005 JP
2006-89096 Apr 2006 JP
3127331 Nov 2006 JP
2007-92697 Apr 2007 JP
2007-138763 Jun 2007 JP
2007-138789 Jun 2007 JP
2008-39316 Feb 2008 JP
2008-100204 May 2008 JP
2008-151081 Jul 2008 JP
3146538 Oct 2008 JP
2008-294243 Dec 2008 JP
2009-44568 Feb 2009 JP
2009-264121 Nov 2009 JP
2010-131259 Jun 2010 JP
2012-36897 Feb 2012 JP
2012-57619 Mar 2012 JP
2002-0061691 Jul 2002 KR
2002-0067468 Aug 2002 KR
10-2005-0102317 Oct 2005 KR
2007-0007997 Jan 2007 KR
10-2010-0055611 May 2010 KR
2000-0032363 Jun 2010 KR
10-0985378 Sep 2010 KR
M394383 Dec 2010 TW
M407299 Jul 2011 TW
WO-9013478 Nov 1990 WO
WO-02073096 Sep 2002 WO
WO-03058795 Jul 2003 WO
WO-03069931 Aug 2003 WO
WO-2005050026 Jun 2005 WO
WO 2005057091 Jun 2005 WO
WO-2006008021 Jan 2006 WO
WO-2006012526 Feb 2006 WO
WO-2007024955 Mar 2007 WO
WO-2007048205 May 2007 WO
WO-2008014641 Feb 2008 WO
WO-2008024569 Feb 2008 WO
WO-2009030879 Mar 2009 WO
WO-2009030881 Mar 2009 WO
WO-2010100448 Sep 2010 WO
WO-2010100451 Sep 2010 WO
WO-2010100452 Sep 2010 WO
WO-2010100453 Sep 2010 WO
WO-2010100462 Sep 2010 WO
WO-2011055134 May 2011 WO
Non-Patent Literature Citations (32)
Entry
Atkinson, U.S. Office Action mailed Sep. 18, 2015, directed to U.S. Appl. No. 13/743,975; 8 pages.
Atkinson et al., U.S. Office Action mailed Dec. 17, 2015, directed to U.S. Appl. No. 13/895,691; 11 pages.
Johnson et al., U.S. Office Action mailed Feb. 12, 2016, directed to U.S. Appl. No. 13/895,667; 13 pages.
Johnson et al., U.S. Office Action mailed Feb. 12, 2016, directed to U.S. Appl. No. 13/895,690; 14 pages.
Search Report dated Mar. 23, 2011, directed to GB Application No. 1020419.6; 1 page.
International Search Report and Written Opinion mailed Mar. 7, 2012, directed to International Application No. PCT/GB2011/052109; 12 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 21, 2011, directed to U.S. Appl. No. 12/203,698; 11 pages.
Gammack et al., Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages.
Gammack, P. et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 13 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages.
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages.
Nicolas, F. et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages.
Nicolas, F. et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages.
Fitton, et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages.
Fitton, et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages.
Gammack, P. et al., U.S. Final Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages.
Gammack, P. et al., U.S. Office Action mailed Nov. 29, 2012, directed to U.S. Appl. No. 12/716,742; 9 pages.
Cookson, M. et al., U.S. Office Action mailed Dec. 19, 2012, directed to U.S. Appl. No. 12/716,778; 8 pages.
Gammack, P. et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages.
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages.
Gammack, P. et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages.
Reba, I. (1966). “Applications of the Coanda Effect,” Scientific American 214:84-92.
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed towards U.S. Appl. No. 12/203,698; 3 pages.
Atkinson et al., U.S. Office Action mailed Sep. 21, 2016, directed to U.S. Appl. No. 13/895,691; 10 pages.
Hodgson et al., U.S. Office Action mailed Mar. 24, 2014, directed to U.S. Appl. No. 13/207,212; 10 pages.
Related Publications (1)
Number Date Country
20130302156 A1 Nov 2013 US