1. Field of the Invention
The present invention relates to a fan for use in a slim electronic device.
2. Description of the Related Art
In recent years, electronic devices, such as notebook personal computers and tablet personal computers, have been becoming thinner and thinner. In addition, such electronic devices have been becoming more and more sophisticated in functionality, causing a considerable increase in generation of heat in the electronic devices. Inside such slim electronic devices, a large number of electronic components are arranged, and a space occupied by air is not large. Therefore, even in the case where components inside such an electronic device do not generate much heat, an increase in a temperature inside the electronic device may not be negligible. Accordingly, a fan is arranged in the electronic device with the view of cooling an interior of the electronic device.
For example, a fan disclosed in JP-A 2008-069672 is structured in such a manner that a plurality of ribs 25 are arranged to project radially inward from an inner circumferential surface of an annular member 23, and a circumferential wall portion of a rotor yoke is press fitted and fixed to a circumferential wall portion of an impeller cup 21 through support members 24, the annular member 23, and the ribs 25.
Inside a slim electronic device, a large number of electronic components are arranged, and a space in which a fan is arranged is not large. Therefore, it is necessary to reduce the thickness of the fan. A reduction in the thickness of the fan leads to reductions in the axial dimensions of components of the fan, leading to a reduction in the axial dimension of an area over which an impeller and a rotor are fixed to each other. This in turn leads to a reduction in strength with which a rotor yoke and the impeller are fixed to each other, and this may cause the impeller to come off the rotor. Accordingly, there is a demand for a structure which achieves an improvement in strength with which the impeller and the rotor are fixed to each other while achieving a reduction in the thickness of the fan.
The present invention has been conceived to improve strength with which an impeller and a rotor portion are fixed to each other while achieving a reduction in the thickness of a fan.
A fan according to a preferred embodiment of the present invention includes a stationary portion, a bearing mechanism, and a rotating portion. The stationary portion includes a stator. The rotating portion is supported to be rotatable about a central axis extending in a vertical direction with respect to the stationary portion. The rotating portion includes a shaft, a rotor portion fixed to the shaft, and an impeller including a plurality of blades and an annular impeller cup arranged to support the blades. The rotor portion is in a shape of a covered cylinder, and includes a cover portion and a cylindrical portion. The impeller is fixed to an outer circumferential surface of the cylindrical portion of the rotor portion. The outer circumferential surface of the cylindrical portion and an inner circumferential surface of the impeller cup have a joining portion therebetween. At least one of the outer circumferential surface of the cylindrical portion and the inner circumferential surface of the impeller cup includes a groove portion recessed radially from the joining portion. The groove portion includes an upward facing surface. An adhesive is arranged in the groove portion. At least a portion of the adhesive is arranged above the upward facing surface of the groove portion.
The above preferred embodiment of the present invention is able to improve strength with which the impeller and the rotor portion are fixed to each other while achieving a reduction in the thickness of the fan.
The above and other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
Hereinafter, specific preferred embodiments of the present invention will be described with reference to the accompanying drawings. It is assumed herein that a direction parallel to a central axis of a fan is referred to by the term “axial direction”, “axial”, or “axially”, that radial directions centered on the central axis of the fan are referred to by the term “radial direction”, “radial”, or “radially”, and that a circumferential direction about the central axis of the fan is referred to by the term “circumferential direction”, “circumferential”, or “circumferentially”. It is also assumed herein that an axial direction is a vertical direction, and that a side on which a cover portion of a rotor portion is arranged with respect to a bearing mechanism is referred to as an upper side. The shape of each member or portion and relative positions of different members or portions will be described based on the above assumptions. It should be noted, however, that the above definitions of the vertical direction and the upper side should not be construed to restrict in any way the orientation of a fan according to any embodiment of the present invention when the fan is manufactured or in use. It is also assumed herein that the terms “inner” and “outer”, “inside and “outside”, “inward” and “outward”, etc., are defined with respect to the radial directions, and that a side on which a stator is arranged with respect to the central axis is referred to as an outer side. The shape of each member or portion and relative positions of different members or portions will be described based on the above assumptions. It should be noted, however, that the above definitions of the terms and the outer side should not be construed to restrict in any way the orientation of a fan according to any embodiment of the present invention when the fan is manufactured or in use.
Referring to
The impeller 330 includes a plurality of blades 331 and an annular impeller cup 332 arranged to support the blades 331. The rotor portion 320 is in the shape of a covered cylinder, and includes a cover portion 321 arranged at a top thereof, and a cylindrical portion 322 arranged to extend axially downward from a radially outer end of the cover portion 321. The impeller 330 is fixed to an outer circumferential surface of the cylindrical portion 322 of the rotor portion 320. In more detail, the impeller cup 332 includes an annular inner circumferential surface, and this inner circumferential surface is fixed to the outer circumferential surface of the cylindrical portion 322 of the rotor portion 320. Referring to
Referring to
Each groove portion 51 is defined in the annular inner circumferential surface of the impeller cup 332. That is, in an annular inner circumference of the impeller cup 332, each groove portion 51 is recessed radially outward from the joining portion 41. Note that each groove portion 51 may be defined in an annular outer circumferential surface of the cylindrical portion 322 of the rotor portion 320. That is, each groove portion 51 may be recessed radially inward from the joining portion 41 in the outer circumferential surface of the cylindrical portion 322. Also note that each of the inner circumferential surface of the impeller cup 332 and the outer circumferential surface of the cylindrical portion 322 may include the groove portions 51.
According to the present preferred embodiment, the groove portions 51 each of which is recessed radially outward are defined in the inner circumferential surface of the impeller cup 332, and each groove portion 51 includes the upward facing surface 52. Further, at least a portion of the adhesive 6 is arranged above the upward facing surface 52. Since at least a portion of the adhesive 6 is arranged above the upward facing surface 52, the adhesive 6 can be arranged in the groove portion 51 when the impeller 330 and the rotor portion 320 are fixed to each other through the adhesive 6. Further, since at least a portion of the adhesive 6 is arranged above the upward facing surface 52 of each groove portion 51, the adhesive 6 is formed in a wedge shape. This contributes to improving strength with which the impeller 330 and the rotor portion 320 are fixed to each other, and to effectively preventing the impeller 330 from coming off the rotor portion 320.
Referring to
The fan 1 further includes a fan housing 11 arranged to surround the blades 331. According to the present preferred embodiment, the fan housing 11 is directly fixed to the stationary portion 100. Note that the fan housing 11 may be indirectly fixed to the stationary portion 100 through another member. Also note that the fan housing 11 and the stationary portion 100 may be defined integrally with each other as a single unitary body. The fan housing 11 is defined by bending a metal sheet. Note that the fan housing 11 may be made of a resin material. The fan housing 11 includes an air inlet (not shown) on one axial side, and also includes an air outlet which opens radially outward. According to the present preferred embodiment, the air inlet (not shown) is arranged above the rotor portion 320 and the impeller 330, is arranged to cover an upper side of the impeller 330, and is arranged to pass through in the vertical direction. The air inlet (not shown) is substantially circular, and is arranged to overlap with the central axis J1. Note that the air inlet (not shown) may be arranged below the impeller 330, and arranged to axially overlap with the impeller 330. Also note that air inlets (not shown) may be arranged both above and below the impeller 330.
Referring to
The impeller 330 of the fan 1 according to the present preferred embodiment is made of a resin material, and is formed by an injection molding process. The impeller 330 can be formed with high precision if the impeller 330 is formed by the injection molding process using molds. In addition, when the molds are used, the impeller 330 can be easily shaped, and a production cost thereof can be reduced. Further, when the impeller 330 is made of the resin material, the weight of the impeller 330 is smaller than in the case where the impeller 330 is made of a metal, and the rotation rate of the impeller 330 can therefore be increased with the same power, leading to an improvement in cooling performance.
As described above, the inner circumferential surface of the impeller cup 332 and the outer circumferential surface of the rotor portion 320 are fixed to each other through press fit, and the adhesive 6 is arranged in each groove portion 51. Since the impeller 330 is fixed to the rotor portion 320 through both press fit and the adhesive 6, an improvement in the strength with which the impeller 330 is fixed to the rotor portion 320 is achieved, and this contributes to preventing the impeller 330 from coming off the rotor portion 320.
Fixture through both press fit and the adhesive 6 achieves a greater fixing strength than fixture through only press fit. The more radially outward a position at which the impeller 330 and the rotor portion 320 are fixed to each other is, the greater the dimensional tolerance of the gap between the impeller 330 and the rotor portion 320 becomes. Accordingly, the gap between the impeller 330 and the rotor portion 320 may not be filled with the adhesive 6, and the strength with which the impeller 330 and the rotor portion 320 are fixed to each other may become so low that the impeller 330 may come off the rotor portion 320. Moreover, when the dimensional tolerance of the gap between the impeller 330 and the rotor portion 320 is great, concentricity of the impeller 330 may deteriorate to make it difficult for the impeller 330 to rotate stably. According to the present preferred embodiment, the joining portion 41 between the impeller 330 and the rotor portion 320 is arranged radially inward to facilitate the dimensional control of the gap between the impeller 330 and the rotor portion 320. The smaller the gap is in width, the more completely the gap is filled with the adhesive 6, and the strength with which the impeller 330 is fixed to the rotor portion 320 is increased. Therefore, arranging the joining portion 41 between the impeller 330 and the rotor portion 320 radially inward enables the gap between the impeller 330 and the rotor portion 320 to be more completely filled with the adhesive 6, and leads to an improvement in the strength with which the impeller 330 is fixed to the rotor portion 320.
In addition, arranging the joining portion 41 between the impeller 330 and the rotor portion 320 radially inward contributes to improving the concentricity of the impeller 330, and to stable rotation of the impeller 330. Accordingly, the fan 1 is able to achieve an improvement in the air volume characteristic.
Further, since an inner circumferential surface of the impeller 330 includes the plurality of groove portions 51 each of which is recessed radially outward, a wedge effect is produced with respect to the adhesive 6, and the strength with which the impeller 330 and the rotor portion 320 are fixed to each other is further improved.
Since the bearing housing 211 has the bottom and is cylindrical, the amount of the lubricating oil in the bearing mechanism 200 can be improved, the degree of lubrication of the bearing portion 210 and the shaft 310 can be improved, and a life of the fan 1 can also be improved.
Since the seal portion 81 is defined between the bearing housing 211 and the rotor portion 320, and the surface of the lubricating oil is located in the seal portion 81, a reduction in evaporation of the lubricating oil is achieved. In particular, in the case where the fan 1 is arranged in the vicinity of a heat source inside an electronic device, heat from the heat source will increase the evaporation of the lubricating oil. According to the present preferred embodiment, since the surface of the lubricating oil is located in the seal portion 81, a reduction in the evaporation of the lubricating oil is achieved, and the life of the fan 1 is improved.
Since the seal portion 81 is arranged radially inward of the joining portion 41, the likelihood that the lubricating oil will leak out of the bearing mechanism 200 is reduced. In addition, the likelihood that dust or the like will enter into the seal portion 81 is also reduced, reducing the likelihood that dust will enter into the lubricating oil, and this reduces the likelihood that dust will intrude into a gap between the shaft 310 and the bearing portion 210 to cause a locking of the fan 1. In addition, in the case where the impeller 330 is made of the resin material, rotation of the impeller 330 produces static electricity on the impeller 330, and dust is easily attached to the impeller 330 due to the static electricity. Since the seal portion 81 is arranged radially inward of the joining portion 41, the likelihood that dust which has been attached to the impeller 330 due to the static electricity will intrude into an interior of the bearing portion 200 is reduced, so that the bearing portion 210 and the shaft 310 can be protected.
The bearing portion 210 according to the present preferred embodiment is a sleeve made of a sintered material. Using the sintered material for the sleeve contributes to increasing the amount of the lubricating oil held inside the bearing mechanism 200, and to improving the life of the fan 1.
At least one of an outer circumferential surface of the shaft 310 and an inner circumferential surface of the bearing portion 210 includes a radial dynamic pressure generation portion 91. According to the present preferred embodiment, the radial dynamic pressure generation portion 91 is defined in the inner circumferential surface of the bearing portion 210. The radial dynamic pressure generation portion 91 is arranged to radially overlap with the joining portion 41. The radial dynamic pressure generation portion 91 is an array of grooves arranged in a herringbone pattern and defined in the inner circumferential surface of the bearing portion 210 by a cutting process or electrochemical machining. Arranging the radial dynamic pressure generation portion 91 to radially overlap with the joining portion 41 contributes to securing a sufficient axial dimension of the radial dynamic pressure generation portion 91 while securing a sufficient axial dimension of the joining portion 41, and thereby enables the fan 1 to have stability while being slim. Note that the radial dynamic pressure generation portion 91 may be defined in the outer circumferential surface of the shaft 310. Also note that the radial dynamic pressure generation portion 91 may be defined in each of the inner circumferential surface of the bearing portion 210 and the outer circumferential surface of the shaft 310. Also note that the radial dynamic pressure generation portion 91 may not necessarily be the array of grooves arranged in the herringbone pattern, but may be an array of grooves arranged in a spiral pattern.
At least one of a lower surface of the cover portion 321 and an upper surface of the bearing portion 210 includes a thrust dynamic pressure generation portion 92. According to the present preferred embodiment, the thrust dynamic pressure generation portion 92 is defined in the upper surface of the bearing portion 210. The thrust dynamic pressure generation portion 92 is arranged to radially overlap with the joining portion 41. The thrust dynamic pressure generation portion 92 is an array of grooves arranged in a herringbone pattern and defined in the upper surface of the bearing portion 210 by a cutting process or electrochemical machining. Arranging the thrust dynamic pressure generation portion 92 to radially overlap with the joining portion 41 enables the thrust dynamic pressure generation portion 92 to be provided while securing a sufficient axial dimension of the joining portion 41, and thereby enables the fan 1 to have stability while being slim. Note that the thrust dynamic pressure generation portion 92 may be defined in the lower surface of the cover portion 321 of the rotor portion 320. Also note that the thrust dynamic pressure generation portion 92 may be defined in each of the upper surface of the bearing portion 210 and the lower surface of the cover portion 321. Also note that the thrust dynamic pressure generation portion 92 may not necessarily be the array of grooves arranged in the herringbone pattern, but may be an array of grooves arranged in a spiral pattern.
When the impeller 330 is formed by the injection molding process using the resin material, a parting line 71 is defined between upper and lower molds. The parting line 71 is defined in the inner circumferential surface of the impeller 330. In the groove portion 51, a portion of the parting line 71 is located at a position where the groove portion 51 has a minimum circumferential width. A portion of the adhesive 6 is arranged above the parting line 71. According to the present preferred embodiment, the parting line 71 and the upward facing surface 52 of the groove portion 51 are arranged at the same axial level. When at least a portion of the adhesive 6 is arranged above the upward facing surface 52, the adhesive 6 assumes the wedge shape in the groove portion 51 when being cured. Accordingly, the adhesive 6 is formed in the wedge shape while having an increased axial dimension, and this leads to an additional improvement in the strength with which the impeller 330 and the rotor portion 320 are fixed to each other, and contributes to preventing the impeller 330 from coming off the rotor portion 320.
Arranging a portion of the parting line 71 to be defined at the position where the groove portion 51 has the minimum circumferential width in the groove portion 51 makes it possible to define the groove portion 51 so as to have a wedge structure by a single injection molding process. Accordingly, strength with which the impeller 330 and the rotor portion 320 stick to each other in the axial direction can be improved by the wedge structure of the adhesive 6 arranged in the groove portion 51, and the impeller 330 can be more effectively prevented from coming off the rotor portion 320. Moreover, since the groove portion 51 can be defined so as to have the wedge structure by the single injection molding process, it is possible to improve the strength with which the impeller 330 and the rotor portion 320 stick to each other in the axial direction while holding down a cost needed to define the impeller 330.
Note that the position of the parting line 71 may be modified as long as a portion of the parting line 71 is located at the position where the groove portion 51 has the minimum circumferential width in the groove portion 51. That is, it is possible to adjust the position of the upward facing surface 52 and control the amount of the adhesive 6 arranged in the groove portion 51 by adjusting the position of the parting line 71 when molding the impeller 330 using the molds, and it is thus possible to reduce an increase in the amount of the adhesive 6 used while securing sufficient strength with which the impeller 330 and the rotor portion 320 are fixed to each other.
While the impellers 330 are produced in large quantities, corner portions of the molds are gradually worn with passage of time. If the corner portions of the molds are worn, a gap is defined between the upper and lower molds, without contact portions thereof being in close contact with each other, when the upper and lower molds have been fitted to each other. Then, once the resin material is poured into a cavity between the upper and lower molds when the impeller 330 is molded, the resin material flows into the aforementioned gap, and after removal of the upper and lower molds, the resin material in the gap becomes a protruding portion which protrudes in the circumferential direction. That is, the protruding portion (i.e., a burr) is defined on the parting line 71. In other words, the protruding portion is defined at the position where the groove portion 51 has the minimum circumferential width. The protruding portion defined on the parting line 71 produces the wedge effect when the adhesive 6 has been arranged in the groove portion 51. This contributes to further improving the strength with which the impeller 330 and the rotor portion 320 are fixed to each other, and to preventing the impeller 330 from coming off the rotor portion 320.
While preferred embodiments of the present invention have been described above, it is to be understood that the present invention is not limited to the above-described preferred embodiments. Note that features of the above-described preferred embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.
Note that the rotor portion and the shaft may be defined by separate members. In this case, the rotor portion and the shaft are fixed to each other through an adhesive and through press fit or insertion.
Note that the plurality of blades may be arranged either at regular intervals or at irregular intervals.
Note that motors of fans according to preferred embodiments of the present invention may be either of a rotating-shaft type or of a fixed-shaft type. Also note that motors of fans according to preferred embodiments of the present invention may be either of an outer-rotor type or of an inner-rotor type.
A fan according to a preferred embodiment of the present invention may be an axial fan in which an air inlet and an air outlet are defined in an axially upper portion and an axially lower portion of a fan housing.
The preferred embodiments of the present invention and modifications thereof are applicable to spindle motors and disk drive apparatuses.
Features of the above-described preferred embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.
While preferred embodiments of the present invention and modifications thereof have been described above, it is to be understood that additional variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0711369 | Dec 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2147005 | Williams | Feb 1939 | A |
4172678 | Schonwald | Oct 1979 | A |
6318964 | Yang | Nov 2001 | B1 |
6572336 | Horng | Jun 2003 | B2 |
6700256 | Fukutani | Mar 2004 | B2 |
7088023 | Gomyo | Aug 2006 | B1 |
8113715 | Ito | Feb 2012 | B2 |
8147203 | Chen | Apr 2012 | B2 |
8324776 | Tamaoka | Dec 2012 | B2 |
8427779 | Shinji | Apr 2013 | B2 |
8638526 | Shinji | Jan 2014 | B2 |
8757978 | Takeshita | Jun 2014 | B2 |
9350211 | Tanaka | May 2016 | B2 |
9366263 | Tamaoka | Jun 2016 | B2 |
9636779 | Chang | May 2017 | B2 |
20030185681 | Lin | Oct 2003 | A1 |
20030185682 | Lei | Oct 2003 | A1 |
20030185684 | Zhong | Oct 2003 | A1 |
20050047920 | Chen | Mar 2005 | A1 |
20050244086 | Murata | Nov 2005 | A1 |
20070014675 | Nagamatsu | Jan 2007 | A1 |
20080024024 | Tamaoka | Jan 2008 | A1 |
20080063542 | Oguma | Mar 2008 | A1 |
20090115275 | Higashihara | May 2009 | A1 |
20090155080 | Yu | Jun 2009 | A1 |
20100074761 | Yang | Mar 2010 | A1 |
20100215505 | Takeshita | Aug 2010 | A1 |
20100232733 | Ito | Sep 2010 | A1 |
20120027571 | Cho | Feb 2012 | A1 |
20130266463 | Kodama | Oct 2013 | A1 |
20140199189 | Tamaoka | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
1191705 | May 1970 | GB |
2008-69672 | Mar 2008 | JP |
Entry |
---|
Kazmer, David O.. (2007). Injection Mold Design Engineering. Hanser Publishers, Munich, Ch. 2, 4. |
Number | Date | Country | |
---|---|---|---|
20150176587 A1 | Jun 2015 | US |