This application claims the priority of United Kingdom Application No. 1004814.8 filed Mar. 23, 2010, the entire contents of which are incorporated herein by reference.
The present invention relates to a portable fan. Particularly, but not exclusively, the present invention relates to a floor or table-top fan, such as a desk, tower or pedestal fan.
A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a ‘wind chill’ or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.
The use of fans in hospitals to keep patients cool is widespread, both in general wards and in isolation wards. For example, depending on the medical condition of the patient it may be preferable to reduce the body temperature of the patient using a fan rather than by using pharmaceuticals. When a fan is assigned to a patient, generally that fan is treated as an item of medical equipment and so, like other medical equipment, will require frequent cleaning by a nurse or other hospital employee. The cleaning of bladed fans can be time consuming for the employee, as the cage housing the blades of the fan needs to be disassembled before the blades of the fan can be cleaned. This disassembly usually requires the use of a screw driver, which cannot be carried by a nurse on a hospital ward. Often, it can be more convenient for the hospital to engage a specialist cleaning company to clean the fan off site, although this can be very expensive.
WO 2009/030879 describes a fan assembly which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing a primary air flow into the base, and an annular nozzle connected to the base and comprising an annular slot through which the primary air flow is emitted from the fan. The nozzle defines a central opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow.
The time required to clean off the external surfaces of this type of “bladeless” fan is much shorter than that required to clean a fan having caged blades, as there is no requirement to dismantle any parts of the fan to access any exposed parts of the fan. For example, the external surfaces of the fan may be wiped clean using a cloth. While this level of cleaning may be sufficient for bladeless fans which are assigned to patients on general wards, when the bladeless fan is assigned to a patient in an isolation ward or infection containment ward there remains a need to keep the internal components of the base clean to avoid cross-contamination when the fan is assigned to another patient.
The present invention provides a portable fan comprising a casing having an air inlet and a first connector, and an air outlet comprising a second connector. A filter unit includes a third connector, which is substantially the same as the second connector, for co-operating with the first connector to removably connect the filter unit to the casing, a filter which is located upstream from the air inlet when the filter unit is connected to the casing, and a fourth connector, which is substantially the same as the first connector, for co-operating with the second connector to removably connect the air outlet to the filter unit.
This can allow the air outlet to be connected either directly to the casing, or for an optional filter unit to be connected between the casing and the air outlet. The type of connection made between the filter unit and the casing, and between the air outlet and the filter unit, is the same as the type of connection which is made between the air outlet and the casing in the absence of the filter unit. This facilitates the connection of the filter unit to the casing and the air outlet, as the technique for connecting the air outlet to the casing is the same as that for connecting the filter unit to the base, and for connecting the air outlet to the filter unit. The filter unit is preferably manually connected to the casing and the air outlet to allow a user to attach the filter unit to the fan, and subsequently detach the filter unit from the fan, without the need for a tool.
The filter unit is preferably in the form of a disposable filter unit which can be replaced when, for example, the fan is assigned to a different patient, when the fan is moved with the patient from an isolation ward to a general ward, or when the filter has reached the end of a prescribed usage period. This can significantly reduce the costs associated with the use of the fan, as the frequency with which the fan may need to be taken off site for cleaning can be significantly reduced.
The filter preferably comprises a high energy particle arrester (HEPA) filter. The filter may also comprise one or more of a foam, carbon, paper, or fabric filter. The filter preferably has a surface area in the range from 0.5 to 1.5 m2 which is exposed to the air flow generated by the fan. To minimize the volume of the filter, the filter is preferably pleated to form a filter which is substantially annular in shape for surrounding the air inlet of the casing. In this case, the filter unit may comprise two annular discs between which the filter is located. These discs can be easily wiped clean during use of the fan. Each disc may comprise a raised rim extending towards the other disc for retaining the filter between the discs. The filter may be readily adhered to the discs during the construction of the filter unit. The discs may together be considered to form at least part of a filter unit to which the filter is adhered during construction of the filter unit.
The filter unit may comprise an outer cover comprising a plurality of apertures through which air enters the filter unit. This outer cover can provide a first, relatively coarse filter to prevent airborne objects such as insects or large particles of dust from coming into contact with the filter, and can prevent the filter from being contacted by a user, particularly during the attachment of the filter to the casing, and so prevent damage to the filter. The outer cover is preferably transparent to allow a user to see the amount of dust or debris which has been captured by the filter.
In a preferred embodiment the filter unit is in the form of a sleeve which is locatable about an external surface of a casing. The casing may be in the form of a base, which may be free-standing on a floor, desk, table or other surface.
The filter unit preferably comprises at least one seal for engaging an outer surface of the casing. This can ensure that the air flow generated by the fan passes through the filter to the air inlet, and not around the filter.
The air inlet may extend at least partially about the casing, and may comprise an array of apertures. For example, the casing may comprise a base surface and a side wall, with the air inlet being located in the side wall of the casing. The casing may be substantially cylindrical in shape. The casing may house means for generating an air flow from the air inlet to the air outlet. The means for generating the air flow preferably comprises an impeller driven by a motor. A diffuser is preferably located downstream from the impeller. The filter unit may comprise a first seal for engaging the casing of the fan, and a second seal for engaging the air outlet of the fan so that an air flow is drawn through the filter unit between the seals and through the filter.
The air outlet may comprise an interior passage for receiving an air flow and a mouth for emitting the air flow. The interior passage may extend about an opening through which air is drawn by the air flow emitted from the mouth.
The first and third connectors may comprise co-operating screw threads to allow the filter unit to be attached to, and subsequently detached from, the casing. Alternatively, the first connector may be arranged to releasably engage the third connector to inhibit rotation of the filter unit relative to the casing. The first connector is preferably in the form of, or comprises, a wedge. The third connector preferably comprises an inclined surface which is configured to slide over an inclined surface of the wedge as the filter unit is rotated relative to the casing to attach the filter unit to the casing. The third connector may also be in the form of a wedge. Opposing surfaces of the first and third connectors subsequently inhibit rotation of the fan unit relative to the casing during use of the fan to prevent the filter unit from becoming inadvertently detached from the casing. The first connector is preferably arranged to flex out of engagement with the third connector, for example due to the user applying a relatively large rotational force to the filter unit, to detach the filter unit from the casing. Thus assembly and disassembly can each be performed in one operation or twist movement, and could be performed by an unskilled user of the fan.
The first connector may be located on an outer surface of the casing, and the third connector may be located on an inner surface of the filter unit. The first connector may be located in a recessed portion of the outer surface of the casing. The filter unit may comprise a fifth connector, and the casing may comprise a sixth connector for co-operating with the fifth connector to inhibit movement of the filter unit away from the casing when the filter unit is connected to the casing by the first connector and the third connector. Similarly, the filter unit may comprise a seventh connector, and the air outlet may comprise an eighth connector for co-operating with the seventh connector to inhibit movement of the air outlet away from the filter unit when the air outlet is connected to the filter unit by the second connector and the fourth connector.
Preferred features of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
As shown in
The upper base member 42 may be tilted relative to the intermediary base member 40 to adjust the direction in which the primary air flow is emitted from the fan 10. For example, the upper surface of the intermediary base member 40 and the lower surface of the upper base member 42 may be provided with interconnecting features which allow the upper base member 42 to move relative to the intermediary base member 40 while preventing the upper base member 42 from being lifted from the intermediary base member 40. For example, the intermediary base member 40 and the upper base member 42 may comprise interlocking L-shaped members.
The upper base member 42 has an open upper end, and comprises an array of apertures 50 which extend at least partially about the upper base member 42. The apertures 50 provide the air inlet 18 of the base 12. The upper base member 42 houses an impeller 52 for drawing the primary air flow through the apertures 50 and into the base 12. Preferably, the impeller 52 is in the form of a mixed flow impeller. The impeller 52 is connected to a rotary shaft 54 extending outwardly from a motor 56. In this example, the motor 56 is a DC brushless motor having a speed which is variable by the controller 44 in response to user manipulation of the dial 22. The maximum speed of the motor 56 is preferably in the range from 5,000 to 10,000 rpm. The motor 56 is housed within a motor bucket comprising an upper portion 58 connected to a lower portion 60. The motor bucket is retained within the upper base member 42 by a motor bucket retainer 62. The upper end of the upper base member 42 comprises a cylindrical outer surface 64. The motor bucket retainer 62 is connected to the open upper end of the upper base member 42, for example by a snap-fit connection. The motor 56 and its motor bucket are not rigidly connected to the motor bucket retainer 62, allowing some movement of the motor 56 within the upper base member 42.
Returning to
The cylindrical outer surface 64 of the upper end of the upper base member 42 further comprises a pair of wedge members 70 having a tapered part 72 and a side wall 74. The wedge members 70 are located on opposite sides of the upper base member 42, with each wedge member 70 being located within a respective cutaway portion of the outer surface 64.
The motor bucket retainer 62 comprises curved vane portions 76, 78 extending inwardly from the upper end of the motor bucket retainer 62. Each curved vane 76, 78 overlaps a part of the upper portion 58 of the motor bucket. Thus the motor bucket retainer 62 and the curved vanes 76, 78 act to secure and hold the motor bucket in place during movement and handling. In particular, the motor bucket retainer 62 prevents the motor bucket from becoming dislodged and falling towards the air outlet 14 if the fan 10 becomes inverted.
With reference again to
The motor bucket is located within, and mounted on, an impeller housing 84. The impeller housing 84 is, in turn, mounted on a plurality of angularly spaced supports 86, in this example three supports, located within the upper base member 42 of the base 12. A generally frusto-conical shroud 88 is located within the impeller housing 84. The shroud 88 is preferably connected to the outer edges of the impeller 52, and is shaped so that the outer surface of the shroud 88 is in close proximity to, but does not contact, the inner surface of the impeller housing 84. A substantially annular inlet member 90 is connected to the bottom of the impeller housing 84 for guiding the primary air flow into the impeller housing 84. The top of the impeller housing 84 comprises a substantially annular air outlet 92 for guiding air flow emitted from the impeller housing 84 towards the air outlet 14.
Preferably, the base 12 further comprises silencing members for reducing noise emissions from the base 12. In this example, the upper base member 42 of the base 12 comprises a disc-shaped foam member 94 located towards the base of the upper base member 42, and a substantially annular foam member 96 located within the impeller housing 84.
A flexible sealing member is mounted on the impeller housing 84. The flexible sealing member inhibits the return of air to the air inlet member 90 along a path extending between the outer casing 16 and the impeller housing 84 by separating the primary air flow drawn in from the external environment from the air flow emitted from the air outlet 92 of the impeller 52 and the diffuser 80. The sealing member preferably comprises a lip seal 98. The sealing member is annular in shape and surrounds the impeller housing 84, extending outwardly from the impeller housing 84 towards the outer casing 16. In the illustrated embodiment the diameter of the sealing member is greater than the radial distance from the impeller housing 84 to the outer casing 16. Thus the outer portion 100 of the sealing member is biased against the outer casing 16 and caused to extend along the inner face of the outer casing 16, forming a seal. The lip seal 98 of the preferred embodiment tapers and narrows to a tip 102 as it extends away from the impeller housing 84 and towards the outer casing 16. The lip seal 98 is preferably formed from rubber.
The sealing member further comprises a guide portion 104 for guiding a power connection cable 106 to the motor 56. The guide portion 104 of the illustrated embodiment is formed in the shape of a collar and may be a grommet. The electrical cable 106 is in the form of a ribbon cable attached to the motor at joint 108. The electrical cable 106 extending from the motor 56 passes out of the lower portion 60 of the motor bucket through spiral fin 82. The passage of the electrical cable 106 follows the shaping of the impeller housing 84 and the guide portion 104 is shaped to enable the electrical cable 106 to pass through the flexible sealing member. The guide portion 104 of the sealing member enables the electrical cable 106 to be clamped and held within the upper base member 42. A cuff 110 accommodates the electrical cable 106 within the lower portion of the upper base member 42.
The outer casing section 120 and the inner casing section 122 together define an annular interior passage 126 of the air outlet 14. Thus, the interior passage 126 extends about the opening 24. The interior passage 126 is bounded by the internal peripheral surface 128 of the outer casing section 120 and the internal peripheral surface 130 of the inner casing section 122. As shown in
The base 132 of the outer casing section 120 comprises an aperture through which the primary air flow enters the interior passage 126 of the air outlet 14 from the upper end of the upper base member 42 and the open upper end of the motor bucket retainer 62.
The mouth 26 of the air outlet 14 is located towards the rear of the fan 10. The mouth 26 is defined by overlapping, or facing, portions 140, 142 of the internal peripheral surface 128 of the outer casing section 120 and the external peripheral surface 124 of the inner casing section 122, respectively. In this example, the mouth 26 is substantially annular and, as illustrated in
Referring to
To secure the air outlet 14 to the base 12, the air outlet 14 is rotated in a clockwise direction relative to the base 12 so that the lugs 136 move along the circumferentially extending tracks 68 of the open grooves 66. The rotation of the air outlet 14 relative to the base 12 also forces the ramps 138 to run up and slide over the tapers 72 of the wedge member 70 through localized elastic deformation of the open upper end of the upper base member 42. With continued rotation of the air outlet 14 relative to the base 12, the ramps 138 are forced over the side walls 74 of the wedge members 70. The open upper end of the upper base member 42 relaxes so that the ramps 138 are generally radially aligned with the wedge members 70. Consequently, the side walls 74 of the wedge members 70 prevent accidental rotation of the air outlet 14 relative to the base 12, whereas the location the lugs 136 within the tracks 68 prevents lifting of the air outlet 14 away from the base 12. The rotation of the air outlet 14 relative to the base 12 does not require excessive rotational force and so the assembly of the fan 10 may be carried out by a user.
To operate the fan 10 the user depresses an appropriate one of the buttons 20 on the base 12, in response to which the controller 44 activates the motor 56 to rotate the impeller 52. The rotation of the impeller 52 causes a primary air flow to be drawn into the base 12 through the air inlet 18. Depending on the speed of the motor 56, the primary air flow generated by the impeller 52 may be between 20 and 30 liters per second. The pressure of the primary air flow at the outlet 92 of the base 12 may be at least 150 Pa, and is preferably in the range from 250 to 1.5 kPa. The primary air flow passes sequentially through the impeller housing 84, the upper end of the upper base member 42 and open upper end of the motor bucket retainer 62 to enter the interior passage 126 of the air outlet 14. The primary air flow emitted from the air outlet 92 of the base 12 is generally in an upward and forward direction.
Within the air outlet 14, the primary air flow is divided into two air streams which pass in opposite directions around the central opening 24 of the air outlet 14. Part of the primary air flow entering the air outlet 14 in a sideways direction (generally orthogonal to the axis X) passes into the interior passage 126 in a sideways direction without significant guidance, whereas another part of the primary air flow entering the air outlet 14 in a direction parallel to the axis X is guided by the curved vanes 76, 78 of the motor bucket retainer 62 to enable the air flow to pass into the interior passage 126 in a sideways direction. As the air streams pass through the interior passage 126, air enters the mouth 26 of the air outlet 14. The air flow into the mouth 26 is preferably substantially even about the opening 24 of the air outlet 14. Within each section of the mouth 26, the flow direction of the portion of the air stream is substantially reversed. The portion of the air stream is constricted by the tapering section of the mouth 26 and emitted through the outlet 98.
The primary air flow emitted from the mouth 26 is directed over the Coanda surface 28 of the air outlet 14, causing a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the outlet 98 of the mouth 26 and from around the rear of the air outlet 14. This secondary air flow passes through the central opening 24 of the air outlet 14, where it combines with the primary air flow to produce a total air flow, or air current, projected forward from the air outlet 14. Depending on the speed of the motor 56, the mass flow rate of the air current projected forward from the fan 10 may be in the range from 300 to 400 liters per second, and the maximum speed of the air current may be in the range from 2.5 to 4 m/s.
The even distribution of the primary air flow along the mouth 26 of the air outlet 14 ensures that the air flow passes evenly over the diffuser surface 30. The diffuser surface 30 causes the mean speed of the air flow to be reduced by moving the air flow through a region of controlled expansion. The relatively shallow angle of the diffuser surface 30 to the axis X of the opening 24 allows the expansion of the air flow to occur gradually. A harsh or rapid divergence would otherwise cause the air flow to become disrupted, generating vortices in the expansion region. Such vortices can lead to an increase in turbulence and associated noise in the air flow which can be undesirable, particularly in a domestic product such as a fan. The air flow projected forwards beyond the diffuser surface 30 can tend to continue to diverge. The guide surface 32 extending inwardly towards the axis X converges the air flow towards the axis X. As a result, the air flow can travel efficiently out from the air outlet 14, enabling rapid air flow to be experienced at a distance of several meters from the fan 10.
The filter unit 200 is in the form of a generally cylindrical sleeve which is locatable around the upper base member 42 of the base 12 so that the filter unit 200 is located over the air inlet 18 of the fan 10, as illustrated in
The filter unit 200 comprises a generally annular filter 202 for removing airborne particles from the primary air flow. The filter 202 is preferably in the form of a radially pleated high energy particle arrester (HEPA) filter. The filter 202 has a surface area that is exposed to the incoming primary air flow generated by the fan which is in the range from 0.5 to 1.5 m2, and in this example is around 1.1 m2. The filter 202 is surrounded by a cylindrical outer cover 204, which is preferably formed from plastics material, to protect the filter 202 and thus allows a user to handle the filter unit 200 without contacting the filter 202. The cover 204 is preferably transparent to allow a user to examine visually the state of the filter 202 during use or after a period of use. The cover 204 comprises a plurality of apertures (not shown) through which the primary air flow enters the filter unit 200, and thus provides a relatively coarse first stage of filtration of the filter unit 200 to prevent relatively large airborne objects or insects from entering the filter unit 200. The filter unit 200 may further comprise additional filter media between the filter 202 and the cover 204, or downstream from the filter 202. For example, this additional filter media may comprise one or more of foam, carbon, paper, or fabric.
The filter 202 and the cover 204 are sandwiched between two annular plates 206, 208 of the filter unit 200. Each plate 206, 208 includes a circular inner rim 210 and a circular outer rim 212 which both extend partially towards the other plate 206, 208. The filter 202 and the cover 204 are located between the rims 210, 212 of the plates 206, 208, and are preferably secured to the plates 206, 208 using an adhesive.
The upper plate 206 comprises a lower collar 214 which is located radially inwardly from the inner rim 210 of the upper plate 206. The lower collar 214 extends axially downwards from the upper plate 206. The inner diameter of the lower collar 214 is substantially the same as the inner diameter of the base 132 of the air outlet 14 of the fan 10. Similar to the base 132 of the air outlet 14, the inner surface of the lower collar 214 comprises two pairs of lugs 216 and a pair of ramps (not shown) for connection to the upper end of the upper base member 42 of the base 12 of the fan 10. The shape of the lugs 216 and the ramps of the lower collar 214, and the angular spacing between the lugs 216 and the ramps of the lower collar 214, are substantially identical to those of the lugs 136 and ramps 138 of the base 132 of the air outlet 14.
The upper plate 206 further comprises an upper collar 218 which is located radially inwardly from the lower collar 214. The upper collar 218 extends axially upwards from the inner circumferential periphery of the upper plate 208. The outer diameter of the upper collar 218 is substantially the same as the outer diameter of the outer surface 64 of the open upper end of the upper base member 42. Similar to the upper base member 42, the upper collar 218 comprises two pairs of open grooves 220 and a pair of wedge members 222. The open grooves 220 are substantially identical to the open grooves 66 of the outer surface 64 of the upper base member 42, and the spacing between the open grooves 220 is substantially the same as that between the open grooves 66. The wedge members 222 are substantially identical to the wedge members 70 of the outer surface 64 of the upper base member 42, and the spacing between the wedge members 222 is substantially the same as that between the wedge members 70. A first annular sealing member 224 of the filter unit 200 extends about the outer surface of the upper collar 218, and is located beneath the circumferentially extending tracks 226 of the grooves 220.
The collars 214, 218 are preferably integral with the upper plate 206, which is preferably formed from plastics material.
The lower plate 208 includes a relatively small collar 228 which extends axially downwardly from the inner rim 210 of the lower plate 208. The collar 228 comprises a circumferentially extending groove located on its inner surface. A second annular sealing member 230 of the filter unit 200 is located within this groove. The collar 228 is preferably integral with the lower plate 208, which is also preferably formed from a plastics material.
To attach the filter unit 200 to the fan 10, first the air outlet 14 is detached from the base 12. To detach the air outlet 14 from the base 12, the air outlet 14 is twisted relative to the base 12 in the opposite direction (anti-clockwise) to that for attaching the air outlet 14 to the base 12. With a suitable torque applied manually by the user, the upper end of the upper base member 42 is again caused to flex locally radially inwardly. This localized deformation of the upper base member 42 allows the ramp 138 to be rotated over the wedge members 70, while the lugs 136 are moved simultaneously along the tracks 68 of the grooves 66. Once the lugs 136 reach the ends of the tracks 68, the air outlet 14 may be lifted from the base 12.
Although the detachment of the air outlet 14 from the base 12 requires a greater force to be applied to the air outlet 14 than the force required for attachment, the resilience of the upper base member 42 is selected so that the detachment of the air outlet 14 may be performed manually
The user then attaches the filter unit 200 to the base 12. The technique for attaching the filter unit 200 to the base 12 is essentially the same as that for attaching the air outlet 14 to the base 12. The user locates the open lower end of the collar 228 of the lower plate 208 over the open upper end of the upper base member 42, and lowers the filter unit 200 around the base 12. When the bottom end of the lower collar 214 of the upper plate 206 is located immediately above the open upper end of the upper base member 42, the user rotates the filter unit 200 until the lugs 216 of the filter unit 200 are located directly in line with the open upper end of the open grooves 66 of the upper base member 42. In this position the pair of ramps of the filter unit is directly in line with the pair of wedge members 70 of the upper base member 42. The filter unit 200 is then pushed further on to the base 12 so that the lugs 216 of the filter unit 200 are located at the base of the open grooves 66 of the base 12. To secure the filter unit 200 to the base 12, the filter unit 200 is rotated in a clockwise direction relative to the base 12 so that the lugs 216 move along the circumferentially extending tracks 68 of the open grooves 66. The rotation of the filter unit 200 relative to the base 12 also forces the ramps to run up and slide over the tapers 72 of the wedge members 70 through localized elastic deformation of the upper base member 42. With continued rotation of the filter unit 200 relative to the base 12, the ramps are forced over the side walls 74 of the wedge members 70. The upper base member 42 relaxes so that the ramps are generally radially aligned with the wedge members 70. Consequently, the side walls 74 of the wedge members 70 prevent accidental rotation of the filter unit 200 relative to the base 12, whereas the location the lugs 216 within the tracks 68 prevents lifting of the filter unit 200 away from the base 12.
As shown in
The air outlet 14 is then attached to the filter unit 200. The attachment of the air outlet 14 to the filter unit 200 is essentially the same as the attachment of the air outlet 14 to the base 12. The base 132 of the air outlet 14 is located over the upper collar 218 of the filter unit 200, and the air outlet 14 is aligned relative to the base 12 so that the lugs 136 of the base 132 of the air outlet 14 are located directly in line with the open upper end of the open grooves 220 of the filter unit 200. The air outlet 14 is then pushed on to the filter unit 200 so that the lugs 136 are located at the base of the open grooves 220. The first sealing member 224 of the filter unit 200 engages the inner surface 134 of the base 132 of the air outlet 14 to form an air-tight seal between the filter unit 200 and the air outlet 14. Again, to secure the air outlet 14 to the filter unit 200 the air outlet 14 is rotated in a clockwise direction relative to the filter unit 200 so that the lugs 136 move along the circumferentially extending tracks 226 of the open grooves 220 of the filter unit 200. The rotation of the air outlet 14 relative to the filter unit 200 also forces the ramps 138 to run up and slide over the tapers of the wedge members 222 of the filter unit 200 through localized elastic deformation of the upper collar 218. With continued rotation of the air outlet 14 relative to the filter unit 200, the ramps 138 are forced over the side walls of the wedge members 222. The upper collar 218 relaxes so that the ramps 138 are generally radially aligned with the wedge members 222. Consequently, the side walls of the wedge members 222 prevent accidental rotation of the air outlet 14 relative to the filter unit 200, whereas the location the lugs 136 within the tracks 226 of the grooves 200 prevents lifting of the air outlet 14 away from the filter unit 200.
The assembled combination of the fan 10 and the filter unit 200 is shown in
Number | Date | Country | Kind |
---|---|---|---|
1004814.8 | Mar 2010 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1357261 | Svoboda | Nov 1920 | A |
1767060 | Ferguson | Jun 1930 | A |
1819498 | Cole | Aug 1931 | A |
1896869 | Larsh | Feb 1933 | A |
2014185 | Martin | Sep 1935 | A |
2035733 | Wall | Mar 1936 | A |
D103476 | Weber | Mar 1937 | S |
2115883 | Sher | May 1938 | A |
D115344 | Chapman | Jun 1939 | S |
2210458 | Keilholtz | Aug 1940 | A |
2258961 | Saathoff | Oct 1941 | A |
2336295 | Reimuller | Dec 1943 | A |
2362933 | Schaefer | Nov 1944 | A |
2394923 | Little | Feb 1946 | A |
2433795 | Stokes | Dec 1947 | A |
2473325 | Aufiero | Jun 1949 | A |
2476002 | Stalker | Jul 1949 | A |
2488467 | De Lisio | Nov 1949 | A |
2510132 | Morrison | Jun 1950 | A |
2544379 | Davenport | Mar 1951 | A |
2547448 | Demuth | Apr 1951 | A |
2583374 | Hoffman | Jan 1952 | A |
2620127 | Radcliffe | Dec 1952 | A |
2765977 | Morrison | Oct 1956 | A |
2808198 | Morrison | Oct 1957 | A |
2813673 | Smith | Nov 1957 | A |
2830779 | Wentling | Apr 1958 | A |
2838229 | Belanger | Jun 1958 | A |
2922277 | Bertin | Jan 1960 | A |
2922570 | Allen | Jan 1960 | A |
3004403 | Laporte | Oct 1961 | A |
3047208 | Coanda | Jul 1962 | A |
3270655 | Guirl et al. | Sep 1966 | A |
3271936 | Dauge | Sep 1966 | A |
D206973 | De Lisio | Feb 1967 | S |
3503138 | Fuchs et al. | Mar 1970 | A |
3518776 | Wolff et al. | Jul 1970 | A |
3724092 | McCleerey | Apr 1973 | A |
3743186 | Mocarski | Jul 1973 | A |
3795367 | Mocarski | Mar 1974 | A |
3850598 | Boehm | Nov 1974 | A |
3871847 | Fish | Mar 1975 | A |
3872916 | Beck | Mar 1975 | A |
3875745 | Franklin | Apr 1975 | A |
3885891 | Throndson | May 1975 | A |
3943329 | Hlavac | Mar 1976 | A |
4037991 | Taylor | Jul 1977 | A |
4046492 | Inglis | Sep 1977 | A |
4061188 | Beck | Dec 1977 | A |
4073613 | Desty | Feb 1978 | A |
4113416 | Kataoka et al. | Sep 1978 | A |
4136735 | Beck et al. | Jan 1979 | A |
4173995 | Beck | Nov 1979 | A |
4180130 | Beck et al. | Dec 1979 | A |
4184541 | Beck et al. | Jan 1980 | A |
4192461 | Arborg | Mar 1980 | A |
4332529 | Alperin | Jun 1982 | A |
4336017 | Desty | Jun 1982 | A |
4342204 | Melikian et al. | Aug 1982 | A |
4448354 | Reznick et al. | May 1984 | A |
4477270 | Tauch | Oct 1984 | A |
4568243 | Schubert et al. | Feb 1986 | A |
4630475 | Mizoguchi | Dec 1986 | A |
4643351 | Fukamachi et al. | Feb 1987 | A |
4703152 | Shih-Chin | Oct 1987 | A |
4718870 | Watts | Jan 1988 | A |
4732539 | Shin-Chin | Mar 1988 | A |
4790133 | Stuart | Dec 1988 | A |
4850804 | Huang | Jul 1989 | A |
4878620 | Tarleton | Nov 1989 | A |
4893990 | Tomohiro et al. | Jan 1990 | A |
4905340 | Gutschmit | Mar 1990 | A |
4978281 | Conger | Dec 1990 | A |
5022900 | Bar-Yona et al. | Jun 1991 | A |
5061405 | Stanek et al. | Oct 1991 | A |
5094676 | Karbacher | Mar 1992 | A |
D325435 | Coup et al. | Apr 1992 | S |
5168722 | Brock | Dec 1992 | A |
5176856 | Takahashi et al. | Jan 1993 | A |
5188508 | Scott et al. | Feb 1993 | A |
5266004 | Tsumurai et al. | Nov 1993 | A |
5266090 | Burnett | Nov 1993 | A |
5296769 | Havens et al. | Mar 1994 | A |
5310313 | Chen | May 1994 | A |
5317815 | Hwang | Jun 1994 | A |
5358443 | Mitchell et al. | Oct 1994 | A |
5402938 | Sweeney | Apr 1995 | A |
5407324 | Starnes, Jr. et al. | Apr 1995 | A |
5425902 | Miller et al. | Jun 1995 | A |
5435817 | Davis et al. | Jul 1995 | A |
5518370 | Wang et al. | May 1996 | A |
5588985 | Shagott et al. | Dec 1996 | A |
5609473 | Litvin | Mar 1997 | A |
5641343 | Frey | Jun 1997 | A |
5645769 | Tamaru et al. | Jul 1997 | A |
5649370 | Russo | Jul 1997 | A |
5735683 | Muschelknautz | Apr 1998 | A |
5753000 | Chiu et al. | May 1998 | A |
5762034 | Foss | Jun 1998 | A |
5762661 | Kleinberger et al. | Jun 1998 | A |
5783117 | Byassee et al. | Jul 1998 | A |
D398983 | Keller et al. | Sep 1998 | S |
5837020 | Cartellone | Nov 1998 | A |
5841080 | Iida et al. | Nov 1998 | A |
5843344 | Junkel et al. | Dec 1998 | A |
5862037 | Behl | Jan 1999 | A |
5868197 | Potier | Feb 1999 | A |
5881685 | Foss et al. | Mar 1999 | A |
D415271 | Feer | Oct 1999 | S |
5997619 | Knuth et al. | Dec 1999 | A |
6001145 | Hammes | Dec 1999 | A |
6015274 | Bias et al. | Jan 2000 | A |
6053968 | Miller | Apr 2000 | A |
6073881 | Chen | Jun 2000 | A |
D429808 | Krauss et al. | Aug 2000 | S |
6123618 | Day | Sep 2000 | A |
6155782 | Hsu | Dec 2000 | A |
6156085 | Chiu et al. | Dec 2000 | A |
D435899 | Melwani | Jan 2001 | S |
6254337 | Arnold | Jul 2001 | B1 |
6269549 | Carlucci et al. | Aug 2001 | B1 |
6278248 | Hong et al. | Aug 2001 | B1 |
6282746 | Schleeter | Sep 2001 | B1 |
6293121 | Labrador | Sep 2001 | B1 |
6321034 | Jones-Lawlor et al. | Nov 2001 | B2 |
6386845 | Bedard | May 2002 | B1 |
6480672 | Rosenzweig et al. | Nov 2002 | B1 |
6599088 | Stagg | Jul 2003 | B2 |
6616722 | Cartellone | Sep 2003 | B1 |
D485895 | Melwani | Jan 2004 | S |
6789787 | Stutts | Sep 2004 | B2 |
6830433 | Birdsell et al. | Dec 2004 | B2 |
6834412 | Stanovich et al. | Dec 2004 | B2 |
7059826 | Lasko | Jun 2006 | B2 |
7088913 | Verhoorn et al. | Aug 2006 | B1 |
7112232 | Chang et al. | Sep 2006 | B2 |
7147336 | Chou | Dec 2006 | B1 |
D539414 | Russak et al. | Mar 2007 | S |
7320721 | Ham et al. | Jan 2008 | B2 |
7478993 | Hong et al. | Jan 2009 | B2 |
7540474 | Huang et al. | Jun 2009 | B1 |
D598532 | Dyson et al. | Aug 2009 | S |
D602143 | Gammack et al. | Oct 2009 | S |
D602144 | Dyson et al. | Oct 2009 | S |
D605748 | Gammack et al. | Dec 2009 | S |
7664377 | Liao | Feb 2010 | B2 |
D614280 | Dyson et al. | Apr 2010 | S |
7775848 | Auerbach | Aug 2010 | B1 |
7806388 | Junkel et al. | Oct 2010 | B2 |
8092166 | Nicolas et al. | Jan 2012 | B2 |
20020106547 | Sugawara et al. | Aug 2002 | A1 |
20030059307 | Moreno et al. | Mar 2003 | A1 |
20030171093 | Gumucio Del Pozo | Sep 2003 | A1 |
20040022631 | Birdsell et al. | Feb 2004 | A1 |
20040049842 | Prehodka | Mar 2004 | A1 |
20040118093 | Chang et al. | Jun 2004 | A1 |
20040149881 | Allen | Aug 2004 | A1 |
20050031448 | Lasko et al. | Feb 2005 | A1 |
20050053465 | Roach et al. | Mar 2005 | A1 |
20050069407 | Winkler et al. | Mar 2005 | A1 |
20050128698 | Huang | Jun 2005 | A1 |
20050163670 | Alleyne et al. | Jul 2005 | A1 |
20050173997 | Schmid et al. | Aug 2005 | A1 |
20050281672 | Parker et al. | Dec 2005 | A1 |
20060096863 | Yamazaki et al. | May 2006 | A1 |
20060172682 | Orr et al. | Aug 2006 | A1 |
20060199515 | Lasko et al. | Sep 2006 | A1 |
20060201119 | Song | Sep 2006 | A1 |
20060260282 | Peng | Nov 2006 | A1 |
20070035189 | Matsumoto | Feb 2007 | A1 |
20070041857 | Fleig | Feb 2007 | A1 |
20070065280 | Fok | Mar 2007 | A1 |
20070166160 | Russak et al. | Jul 2007 | A1 |
20070176502 | Kasai et al. | Aug 2007 | A1 |
20070224044 | Hong et al. | Sep 2007 | A1 |
20070269323 | Zhou et al. | Nov 2007 | A1 |
20080020698 | Spaggiari | Jan 2008 | A1 |
20080152482 | Patel | Jun 2008 | A1 |
20080166224 | Giffin | Jul 2008 | A1 |
20080286130 | Purvines | Nov 2008 | A1 |
20080314250 | Cowie et al. | Dec 2008 | A1 |
20090026850 | Fu | Jan 2009 | A1 |
20090039805 | Tang | Feb 2009 | A1 |
20090060710 | Gammack et al. | Mar 2009 | A1 |
20090060711 | Gammack et al. | Mar 2009 | A1 |
20090097953 | Brugger et al. | Apr 2009 | A1 |
20090188126 | Gaillard et al. | Jul 2009 | A1 |
20090191054 | Winkler | Jul 2009 | A1 |
20090205498 | Wang et al. | Aug 2009 | A1 |
20090214341 | Craig | Aug 2009 | A1 |
20090280007 | Ou et al. | Nov 2009 | A1 |
20100150699 | Nicolas et al. | Jun 2010 | A1 |
20100162011 | Min | Jun 2010 | A1 |
20100171465 | Seal et al. | Jul 2010 | A1 |
20100225012 | Fitton et al. | Sep 2010 | A1 |
20100226749 | Gammack et al. | Sep 2010 | A1 |
20100226750 | Gammack | Sep 2010 | A1 |
20100226751 | Gammack et al. | Sep 2010 | A1 |
20100226752 | Gammack et al. | Sep 2010 | A1 |
20100226753 | Dyson et al. | Sep 2010 | A1 |
20100226754 | Hutton et al. | Sep 2010 | A1 |
20100226758 | Cookson et al. | Sep 2010 | A1 |
20100226763 | Gammack et al. | Sep 2010 | A1 |
20100226764 | Gammack et al. | Sep 2010 | A1 |
20100226769 | Helps | Sep 2010 | A1 |
20100226771 | Crawford et al. | Sep 2010 | A1 |
20100226787 | Gammack et al. | Sep 2010 | A1 |
20100226797 | Fitton et al. | Sep 2010 | A1 |
20100226801 | Gammack | Sep 2010 | A1 |
20100254800 | Fitton et al. | Oct 2010 | A1 |
20110058935 | Gammack et al. | Mar 2011 | A1 |
20110072770 | Lakdawala et al. | Mar 2011 | A1 |
20110110805 | Gammack et al. | May 2011 | A1 |
20110164959 | Fitton et al. | Jul 2011 | A1 |
20110223014 | Crawford et al. | Sep 2011 | A1 |
20110223015 | Gammack et al. | Sep 2011 | A1 |
20110236228 | Fitton et al. | Sep 2011 | A1 |
20110236229 | Fitton et al. | Sep 2011 | A1 |
20120031509 | Wallace et al. | Feb 2012 | A1 |
20120033952 | Wallace et al. | Feb 2012 | A1 |
20120034108 | Wallace et al. | Feb 2012 | A1 |
20120039705 | Gammack | Feb 2012 | A1 |
20120045315 | Gammack | Feb 2012 | A1 |
20120045316 | Gammack | Feb 2012 | A1 |
20120057959 | Hodgson et al. | Mar 2012 | A1 |
20120082561 | Gammack et al. | Apr 2012 | A1 |
20120093629 | Fitton et al. | Apr 2012 | A1 |
20120093630 | Fitton et al. | Apr 2012 | A1 |
20120114513 | Simmonds et al. | May 2012 | A1 |
20120230658 | Fitton et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
560119 | Aug 1957 | BE |
1055344 | May 1979 | CA |
2155482 | Sep 1996 | CA |
346643 | May 1960 | CH |
2085866 | Oct 1991 | CN |
2111392 | Jul 1992 | CN |
1437300 | Aug 2003 | CN |
1510354 | Jul 2004 | CN |
2650005 | Oct 2004 | CN |
2713643 | Jul 2005 | CN |
1680727 | Oct 2005 | CN |
2833197 | Nov 2006 | CN |
201180678 | Jan 2009 | CN |
201221477 | Apr 2009 | CN |
101424278 | May 2009 | CN |
101424279 | May 2009 | CN |
201281416 | Jul 2009 | CN |
201349269 | Nov 2009 | CN |
101749288 | Jun 2010 | CN |
201502549 | Jun 2010 | CN |
201568337 | Sep 2010 | CN |
101936310 | Jan 2011 | CN |
101984299 | Mar 2011 | CN |
101985948 | Mar 2011 | CN |
201763705 | Mar 2011 | CN |
201763706 | Mar 2011 | CN |
201770513 | Mar 2011 | CN |
201779080 | Mar 2011 | CN |
201802648 | Apr 2011 | CN |
102095236 | Jun 2011 | CN |
102367813 | Mar 2012 | CN |
1 291 090 | Mar 1969 | DE |
24 51 557 | May 1976 | DE |
27 48 724 | May 1978 | DE |
3644567 | Jul 1988 | DE |
195 10 397 | Sep 1996 | DE |
197 12 228 | Oct 1998 | DE |
100 00 400 | Mar 2001 | DE |
10041805 | Jun 2002 | DE |
10 2009 007 037 | Aug 2010 | DE |
0 044 494 | Jan 1982 | EP |
0186581 | Jul 1986 | EP |
0 556 435 | Aug 1993 | EP |
1 094 224 | Apr 2001 | EP |
1 138 954 | Oct 2001 | EP |
1 779 745 | May 2007 | EP |
1 939 456 | Jul 2008 | EP |
1 980 432 | Oct 2008 | EP |
2 000 675 | Dec 2008 | EP |
2191142 | Jun 2010 | EP |
1033034 | Jul 1953 | FR |
1119439 | Jun 1956 | FR |
1.387.334 | Jan 1965 | FR |
2 534 983 | Apr 1984 | FR |
2 640 857 | Jun 1990 | FR |
2 658 593 | Aug 1991 | FR |
2794195 | Dec 2000 | FR |
2 874 409 | Feb 2006 | FR |
2 906 980 | Apr 2008 | FR |
22235 | Jan 1914 | GB |
383498 | Nov 1932 | GB |
593828 | Oct 1947 | GB |
601222 | Apr 1948 | GB |
633273 | Dec 1949 | GB |
641622 | Aug 1950 | GB |
661747 | Nov 1951 | GB |
863 124 | Mar 1961 | GB |
1067956 | May 1967 | GB |
1 262 131 | Feb 1972 | GB |
1 265 341 | Mar 1972 | GB |
1 278 606 | Jun 1972 | GB |
1 304 560 | Jan 1973 | GB |
1 403 188 | Aug 1975 | GB |
1 434 226 | May 1976 | GB |
1 501 473 | Feb 1978 | GB |
2 094 400 | Sep 1982 | GB |
2 107 787 | May 1983 | GB |
2 111 125 | Jun 1983 | GB |
2 178 256 | Feb 1987 | GB |
2 185 531 | Jul 1987 | GB |
2 185 533 | Jul 1987 | GB |
2 218 196 | Nov 1989 | GB |
2 236 804 | Apr 1991 | GB |
2 240 268 | Jul 1991 | GB |
2 242 935 | Oct 1991 | GB |
2 285 504 | Jul 1995 | GB |
2 289 087 | Nov 1995 | GB |
2383277 | Jun 2003 | GB |
2 428 569 | Feb 2007 | GB |
2 452 593 | Mar 2009 | GB |
2452490 | Mar 2009 | GB |
2463698 | Mar 2010 | GB |
2464736 | Apr 2010 | GB |
2466058 | Jun 2010 | GB |
2468312 | Sep 2010 | GB |
2468313 | Sep 2010 | GB |
2468315 | Sep 2010 | GB |
2468319 | Sep 2010 | GB |
2468320 | Sep 2010 | GB |
2468323 | Sep 2010 | GB |
2468328 | Sep 2010 | GB |
2468331 | Sep 2010 | GB |
2468369 | Sep 2010 | GB |
2473037 | Mar 2011 | GB |
2479760 | Oct 2011 | GB |
2482547 | Feb 2012 | GB |
31-13055 | Aug 1956 | JP |
35-4369 | Mar 1960 | JP |
39-7297 | Mar 1964 | JP |
49-150403 | Dec 1974 | JP |
51-7258 | Jan 1976 | JP |
53-60100 | May 1978 | JP |
56-167897 | Dec 1981 | JP |
57-71000 | May 1982 | JP |
57-157097 | Sep 1982 | JP |
61-31830 | Feb 1986 | JP |
61-116093 | Jun 1986 | JP |
61-280787 | Dec 1986 | JP |
62-223494 | Oct 1987 | JP |
63-179198 | Jul 1988 | JP |
63-306340 | Dec 1988 | JP |
64-21300 | Feb 1989 | JP |
64-83884 | Mar 1989 | JP |
1-138399 | May 1989 | JP |
1-224598 | Sep 1989 | JP |
2-146294 | Jun 1990 | JP |
2-218890 | Aug 1990 | JP |
2-248690 | Oct 1990 | JP |
3-52515 | May 1991 | JP |
3-267597 | Nov 1991 | JP |
3-267598 | Nov 1991 | JP |
4-43895 | Feb 1992 | JP |
4-109095 | Apr 1992 | JP |
4-366330 | Dec 1992 | JP |
5-157093 | Jun 1993 | JP |
5-164089 | Jun 1993 | JP |
5-263786 | Oct 1993 | JP |
6-74190 | Mar 1994 | JP |
6-86898 | Mar 1994 | JP |
6-147188 | May 1994 | JP |
6-257591 | Sep 1994 | JP |
6-280800 | Oct 1994 | JP |
6-336113 | Dec 1994 | JP |
7-190443 | Jul 1995 | JP |
8-21400 | Jan 1996 | JP |
8-21648 | Jan 1996 | JP |
9-100800 | Apr 1997 | JP |
9-287600 | Nov 1997 | JP |
11-159499 | Jun 1999 | JP |
11-227866 | Aug 1999 | JP |
2000-116179 | Apr 2000 | JP |
2000-201723 | Jul 2000 | JP |
2001-17358 | Jan 2001 | JP |
2002-21797 | Jan 2002 | JP |
2002-138829 | May 2002 | JP |
2002-213388 | Jul 2002 | JP |
2003-329273 | Nov 2003 | JP |
2004-8275 | Jan 2004 | JP |
2004-16466 | Jan 2004 | JP |
2004-208935 | Jul 2004 | JP |
2004-216221 | Aug 2004 | JP |
2004-232954 | Aug 2004 | JP |
2005-201507 | Jul 2005 | JP |
2005-307985 | Nov 2005 | JP |
2006-89096 | Apr 2006 | JP |
3127331 | Nov 2006 | JP |
2007-138763 | Jun 2007 | JP |
2007-138789 | Jun 2007 | JP |
2008-39316 | Feb 2008 | JP |
2008-100204 | May 2008 | JP |
3146538 | Oct 2008 | JP |
2008-294243 | Dec 2008 | JP |
2009-44568 | Feb 2009 | JP |
2009-62987 | Mar 2009 | JP |
2010-131259 | Jun 2010 | JP |
10-2005-0102317 | Oct 2005 | KR |
2007-0007997 | Jan 2007 | KR |
10-2010-0055611 | May 2010 | KR |
10-0985378 | Sep 2010 | KR |
M2394383 | Dec 2010 | TW |
M407299 | Jul 2011 | TW |
WO-9013478 | Nov 1990 | WO |
WO-02073096 | Sep 2002 | WO |
WO-03058795 | Jul 2003 | WO |
WO-03069931 | Aug 2003 | WO |
WO-2005050026 | Jun 2005 | WO |
WO-2005057091 | Jun 2005 | WO |
WO-2006008021 | Jan 2006 | WO |
WO-2006012526 | Feb 2006 | WO |
WO-2006071503 | Jul 2006 | WO |
WO-2006083849 | Aug 2006 | WO |
WO-2007024955 | Mar 2007 | WO |
WO-2007048205 | May 2007 | WO |
WO-2008014641 | Feb 2008 | WO |
WO-2008024569 | Feb 2008 | WO |
WO-2009010528 | Jan 2009 | WO |
WO-2009030879 | Mar 2009 | WO |
WO-2009030881 | Mar 2009 | WO |
WO-2010100451 | Sep 2010 | WO |
WO-2010100452 | Sep 2010 | WO |
WO-2010100453 | Sep 2010 | WO |
WO-2010100462 | Sep 2010 | WO |
Entry |
---|
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages. |
Gammack, P. et al., U.S. Office Action mailed Jun. 21, 2011, directed to U.S. Appl. No. 12/203,698; 11 pages. |
Gammack et al., Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages. |
Gammack, P. et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages. |
Gammack, P. et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 13 pages. |
Gammack, P. et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Gammack, P. et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages. |
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages. |
Nicolas, F. et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages. |
Nicolas, F. et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages. |
Fitton, et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages. |
Fitton, et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages. |
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages. |
Gammack, P. et al., U.S. Final Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages. |
Gammack, P. et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages. |
Gammack, P. et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages. |
Gammack, P. et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages. |
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages. |
Gammack, P. et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages. |
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed towards U.S. Appl. No. 12/203,698; 3 pages. |
Simmonds et al., U.S. Office Action mailed Dec. 27, 2013, directed to U.S. Appl. No. 13/125,742; 18 pages. |
Fitton et al., U.S. Office Action mailed Sep. 13, 2013, directed to U.S. Appl. No. 13/052,832; 13 pages. |
Fitton et al., U.S. Office Action mailed Sep. 13, 2013, directed to U.S. Appl. No. 13/052,830; 10 pages. |
GB Search Report dated May 20, 2010 directed to GB Application No. 1004813.0; 1 page. |
GB Search Report dated May 20, 2010, directed to GB Application No. 1004812.2; 1 page. |
GB Search Report dated May 20, 2010, directed to GB Patent Application No. 1004814.8 ; 1 page. |
Reba, I., (Jun. 1966). “Applications of the Coanda Effect.” Scientific American.214:84-92. |
International Search Report and Written Opinion, mailed on Jun. 1, 2011, directed to International Patent Application No. PCT/GB2011/050427; 11 pages. |
International Search Report and Written Opinion mailed Jul. 13, 2011, directed to International Application No. PCT/GB2011/050429; 11 pages. |
International Search Report and Written Opinion mailed Jul. 15, 2011, directed to International Application No. PCT/GB2011/050428; 13 pages. |
Fitton et al., U.S. Office Action mailed May 14, 2013, directed to U.S. Appl. No. 13/052,832; 15 pages. |
Fitton et al., U.S. Office Action mailed May 15, 2013, directed to U.S. Appl. No. 13/052,830; 11 pages. |
Fitton et al., U.S. Office Action mailed Oct. 26, 2012, directed to U.S. Appl. No. 13/052,832; 13 pages. |
Fitton et al., U.S. Office Action mailed Nov. 15, 2012, directed to U.S. Appl. No. 13/052,830; 10 pages. |
Number | Date | Country | |
---|---|---|---|
20110236219 A1 | Sep 2011 | US |