Field of the Invention
The present invention relates generally to space heating systems and more particularly to a Faraday effect circulating hot liquid building heating system and method.
Description of the Prior Art
Circulating hot water heating systems are well known in the art of building heating. Typically a furnace or boiler is used to produce either hot water or steam which is then circulated throughout a series of pipes as either steam or more likely hot water through a series of radiators to heat spaces. The drawback to such systems is that the furnace or boiler is either on or off. There is not control of the amount of heat being produced. For example, Vandenberg in U.S. Pat. No. 2,748,710 teaches a heat circulating pump system. Marshall in U.S. Pat. No. 3,213,929 teaches a temperature control system for a liquid circulating system.
Faraday induction heating is also well-known in the art. A time changing magnetic flux that induces an electric field around the perimeter of the flux. If a conductor is present on this perimeter, it sees a voltage which causes a current to flow in the conductor. If the resistive path of the conductor is low, it will heat. Induction heating is commonly used in industry.
It is also known that if permanent magnets are moved past a conductor, or vice-versa, they induce a Faraday voltage into the conductor. This is the principle of an electric generator. De Bennetot in U.S. Pat. No. 4,486,638 teaches using a wind turbine to turn a magnetic rotor near the conducting walls of a cavity to produce heat. Dooley in US Patent Publication 2004/0189108 moves windings near permanent magnets.
It would be extremely advantageous to have a system that used Faraday Effect heating by rotating magnets hear a conductive tube containing a fluid to be heated which is then pumped through a space or building for heating.
Therefore, it is an object of the present invention to provide a heat exchanger that can replace conventional gas type heaters, costs much less to operate and its green for the environment. The present invention can replace conventional boilers in closed loop radiator heating systems, radiant floor systems and baseboard heating systems or conventional forced air gas heating systems.
It is also an object of the present invention to provide a heating system for electric vehicles. Conventional automobiles receive their heat from the gasoline engine's radiator once the vehicle's engine gets hot. The present invention is advantageous for any electric vehicle since there is no gasoline engine to supply heat.
Finally, it is an object of the present invention to provide a heating device that can produce heat within seconds after it being turned on.
The present invention relates to a Faraday heating system that can be used to heat and circulate water or other fluid through a building, home or space for heating. The present invention includes a new type of heat exchanger that uses only electricity to produce hot water, or other liquid, for heating homes, office buildings and even electric vehicles.
A series of permanent magnets are mounted around the periphery, or elsewhere, on a non-magnetic disk. Typically, the magnets are small cylinders with a north pole at one end of the cylinder and a south pole at the other end. The cylinder magnets are mounted with their poles facing outward from the flat surface of the disk. The magnets are mounted with the north and south poles alternating so that if a particular magnet presents a north pole, the next magnet presents a south pole and so forth. This causes a series of field lines to extend out from the disk from magnet to magnet. A copper or other highly conductive tube is mounted near the periphery of the disk so that when the disk is rotated, the magnetic field lines cut the tube inducing eddy currents in the tube. This causes the tube to heat. Circulating liquid is pumped through the tube, so that as the disk is rotated by a motor, the liquid heats in the tube. The amount of heat transfer can be controlled by changing the speed of rotation of the disk. The heated liquid can then be pumped, or otherwise circulated, through a standard liquid heating system. Information from one or more thermostats can be fed back to a motor controller to increase or decrease the speed of rotation of the disk as more or less heat is needed. Various configurations of both the magnets and the tubing in relation to the disk are possible in different embodiments of the present invention.
Attention is now directed to several figures that illustrate features of the present invention:
Several illustrations have been presented to aid in understanding the present invention. The scope of the present invention is not limited to what is shown in the figures.
The present invention relates to a Faraday Effect heating system for spaces, buildings, homes and electric vehicles that uses only electricity to produce heat.
The main parts used in the present invention are: a non-magnetic disk, a set of neodymium or other permanent magnets, copper tubing or other metal tubing, a first electric motor with optional speed control, and a pump generally operated by a second electric motor. The disk is mounted on bearings and connected to the first motor with a shaft. The first motor spins up the non-magnetic disk with the neodymium magnets mounted near or on the edge of the disk exposing both ends of each rod shaped neodymium magnet. The metal tubing can be shaped in the same pattern mounted in a stationary position around the locations of the mounted neodymium magnets top and bottom of the non-magnetic disk. When the disk starts to spin the tubing acts as a dead electrical short causing the copper tubing to become very hot from eddy currents induced by the Faraday Effect. The second motor is used in pumping cold water or other liquid through the hot metal tubing and the rest of the heating system. The speed of rotation, or RPM, of the non-magnetic disk with the magnets determines how hot the copper tubing becomes, or more exactly how much heat it can transfer to the liquid. The faster the disk spins near the stationary metal tubing, the more heat is transferred to the liquid causing the liquid temperature to increase. Changing the speed of the disk rotation regulates the output temperature of the liquid being circulated through the heated space. A thermostat can be used to feed back temperature information to a motor speed controller for closed-loop operation.
With conventional gas heaters there are only two modes of operation, full heat on and heat off. When the home of office calls for heat, the conventional gas heater turns on full heat until the desired temperature is reached and then turns off completely. Once the temperature goes below a set temperature, it then repeats the heat on and then off cycle. This causes the temperature in the heated space to increase to an upper set point when the furnace is on and fall to a lower set point when the furnace is off.
With the present invention, there is more then just full heat on and heat off. There can be a trickle heat mode that depends on the desired hold temperature. When the heated space calls for heat, the present invention typically turns on full heat output, but when the desired temperature is reached, the system can go into a trickle heat mode to keep the heated space at an even steady temperature. Since the amount of heat supplied to the circulating liquid is directly proportional to the speed of rotation of the disk, very fine temperature control of the liquid and the heated space can be achieved by simply changing the disk rotation speed.
This is much more efficient then a conventional gas heater. It is very similar to a flywheel principle. It takes a lot of energy to start spinning up a flywheel, but once it's spinning, it only takes a small amount of energy to keep it spinning. The present invention works in a similar way thus using less energy and keeping the heated space at a constant desired temperature. There is no variation between thermostat on and thermostat off, and no annoying change from the upper set point temperature to the lower set point temperature of a convention gas heater.
Turning to
The magnets produce magnetic B field lines 23 from N poles to S poles. The B field lines 23 cut across a roughly circular rings that span the parameter of the tubing causing these rings to see a magnetic flux across their surfaces. One such imaginary ring is shown in
As the imaginary rings on the surface of the tubing move past the magnets, the induced EMF or voltage around each ring causes a current 25 to flow according to Ohm's Law. Current I=V/R. Since the resistance of the metal tube is low, a high current 25 develops. This current immediately causes the metal to heat by putting power into the metal according to P=I(squared)R (or alternatively P=V(squared)/R) The metal acts as basically a dead short and hence, gets very hot. If liquid is flowing through it, the generated heat in the metal can be continually transferred to the liquid. Due to Lenz's Law, the faster the disk is rotated, the harder it becomes to rotate it against the induced magnetic field. Again, this conserves energy by requiring the driving motor to draw more input current from the AC line, or other energy supply, to rotate the disk faster then to rotate it slower. The faster the disk rotates, the more heat it produces. The rate of heat transfer to the liquid, and hence its temperature rise, depends on its thermal capacity, its flow rate and whether the flow is laminar or turbulent. In any case, the liquid can be heated very efficiently.
Water or other thermal fluid can be held in a reservoir 3 and is moved by a pump 4 through the heat exchange piping system 5. The heated liquid in the piping can heat room air through the use of radiators 6 known in the art. Cooled water from the heating system 5 is returned through piping 7 to the copper or other metal tube 2 that passes in proximity to the moving mounted magnets 15. The tubing near the magnets heats according to the Faraday Effect as previously described transferring heat to the fluid raising or maintaining its temperature to a desired value.
Source water or other fluid can be filled introduced through a cool liquid inlet 13 controlled by a valve 14. When the system is operated in closed loop (with the same liquid re-circulating continuously), new liquid only needs to be introduced to either initially fill the system, or to replace any lost in the process.
While
While a preferred mode of operation is to use a rotating disk, any configuration of moving magnets may be used including rows of magnets that move back and forth in linear motion. The only requirement is that the moving magnets create a time changing magnetic flux in the tube.
Any configuration of tubing and magnets is within the scope of the present invention.
The following are examples of embodiments of the present invention:
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing and turning the flow of electrons into heat where a transfer liquid is pumped through the copper tubing collecting the heated molecules and exchanging them with another radiator heating the molecules of air around the radiator.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing and turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting the heated molecules and exchanging them with another radiator heating the molecules of air around the radiator and where a fan is used to help disperse the heated air molecules.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the speed of the spinning non-magnetic disk determines the temperature of the liquid pumped through the copper tubing.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator wherein the space between the copper tubing being further away from the magnets will produce less heat.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the cross-section of the copper tubing is rectangle.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the cross-section of the copper tubing is flat rectangle.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the cross-section of the copper tubing is round.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in non-magnetic disk is stainless steal.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the non-magnetic disk is aluminum.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the disk is any non-magnetic material.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the copper tubing has ridges inside the tubing wall.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the copper tubing has more then one channel for liquid to flow through.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the magnets are a solid mass magnetic material.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the magnets are electro magnetic coils and ferro-magnetic material.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the magnets are electromagnetic coils and magnetic materials and powering only some of the coils limiting the amount of heat output.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the motor spinning the non-magnetic disk is a AC motor.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the motor spinning the non-magnetic disk is a DC motor.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the motor pumping the liquid through the copper tubing is a AC motor.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the motor pumping the liquid through the copper tubing is a DC motor.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the electric power source to run the motors can be a utility grid.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the electric power source to run the motors can be solar cells.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the electric power source to run the motors can be batteries.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the magnets are only on one side of the non-magnetic disk.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the magnets are on both sides of the non-magnetic disk.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there is only one non-magnetic disk with magnets.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there are two or more non-magnetic disk with magnets.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there is only one non-magnetic disk with magnets and one stationary copper tubing.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there is only one non-magnetic disk with magnets and two stationary copper tubing's one for the top side and one for the bottom side and the copper tubing's are connected to each other.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there is only one non-magnetic disk with magnets and two stationary copper tubing's one for the top side and one for the bottom side and the copper tubing's are not connected to each other.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there are two or more non-magnetic disk with magnets and two stationary copper tubing's for each non-magnetic disk one for the top side and one for the bottom side and the copper tubings are connected to each other in series.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there are two or more non-magnetic disk with magnets and two stationary copper tubing's for each non-magnetic disk one for the top side and one for the bottom side and the copper tubings are connected to each other in parallel.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in there are two or more non-magnetic disk with magnets and two stationary copper tubing's for each non-magnetic disk one for the top side and one for the bottom side and the copper tubing's are not connected to each other.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the spinning non-magnetic disk can be clockwise or counter clockwise.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in only one motor is required in spinning the non-magnetic disk and pumping the liquid through the tubing.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in ones set of magnets are used on the top of the non-magnetic disk and a second set of magnets are used in the bottom of the non-magnetic disk.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the volume of liquid running through the tubing will determine how hot the liquid will become.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the there are rows of magnets and rows of tubing.
A mechanical device consisting of a non-magnetic disk holding magnets in a north south configuration and copper tubing shaped in the same pattern mounted next to the magnets on the non-magnetic disk, where in the disk is spinning and the copper tubing is stationary experiencing moving electrons from the magnets in the copper tubing turning the electron flow into heat where a transfer liquid is pumped through the copper tubing collecting heat and exchanging it with another radiator heating the molecules of air around the radiator where in the rows of magnets and rows of tubing are in a spiral configuration.
While several configurations and arrangements have been shown, numerous other configurations of the magnets and tubing are possible. Any such configuration is within the scope of the present invention. In particular, the magnets can be mounted on the edge of the disk facing outward. Also, numerous different configurations of the heating system and working fluid are possible, all of which are within the scope of the present invention. Finally, one with skill in the art will realize that numerous other changes and variations are possible without departing from the spirit of the invention. Each of these changes and variations is within the scope of the present invention.