The present invention relates to a fast abrasion test for granules, preferably inorganic or organic granules, with particular preference plastic granules, in particular for artificial lawn filling materials. In addition, the fast test of the present invention enables the determination of the strength and the adhesion of material layers on surfaces or in interlayers of multilayer granules.
Plastic granules are a typical supply form of thermoplastics from the base material manufacturers for the plastic processing industry. Because of their free-flowing capability, they are a bulk material, such as sand or gravel, and therefore can be transported and further processed comparatively easily.
There has recently been intensive discussion of the use of plastic granules as filling material for artificial lawns. For example, European Patent Application EP 1 416 009 A1 discloses the use of coated rubber particles as bedding material or as a loose elastic layer for artificial lawns or other floor coverings. The rubber particles are of irregular n-polygon shape and preferably have a mean size of between 0.4 mm and 2.5 mm up to a maximum of 4.0 mm. The individual rubber particles are provided over their complete surface with a 5 μm to 35 μm thick coat. The coat forms a permanently elastic coating which is intended largely to prevent pollutants, such as zinc, from being washed out. In addition, the aim is for this encapsulation to reduce a rubber smell typical of old rubber.
Such plastic granules must, inter alia, have a high abrasion resistance to be applied as filling material for artificial lawns. However, there is no test known to date by means of which the abrasion resistance of plastic granules can be determined and estimated quickly and cost-effectively in a simple way.
To date, the so-called Hardgroove test in accordance with ISO-5074 has been carried out for testing the abrasion resistance of artificial lawn granules (infill materials). To this end, the plastic granules are milled in a special ball mill (500 revolutions), no pulverizing or other changes to the rubber granules being permitted. The particle size of the plastic granules is determined before and after milling and an intercomparison is made, an abrasion resistance of at least 95% being required in order to withstand the test.
This test has many disadvantages, however:
From time to time, use has also been made of other abrasion test methods for filling granules, for example by means of a roller block or annular shear cell. These methods also exhibit substantial disadvantages. The production of detectable and/or measurable abrasion by means of a roller block requires a very long time. Moreover, a quantitative transfer of the fines produced is from very difficult to impossible because of the high surface and possible high electrostatic charging. It is a complicated matter to fill and to empty the equipment, and difficult to control its temperature in order to be able to measure the abrasion behaviour at various temperatures.
A long time is likewise required to produce detectable and/or measurable abrasion by means of an annular shear cell. It is difficult after the milling to transfer the material quantitatively from the apparatus, and it is likewise difficult to clean the apparatus. The temperature of the apparatus can also be controlled only with difficulty so as to be able to measure the abrasion behaviour at various temperatures.
The abrasion determining methods (DIN 53516) for plastic blocks and fleeces (and thus, for example, for through-coloured material, such as EPDM or TPE) are described in DIN V18035-7:2002-06 and cannot be applied for abrasion measurements on coated rubber granules from old tyres.
The same holds for the abrasion test, described in DIN ISO 4649, for cylindrical elastomeric samples which are exposed to a defined abrasion loading by means of an emery paper. This test, too, cannot be applied for granules composed of small pieces.
It was therefore an object of the present invention to indicate possibilities for fast testing of the abrasion resistance of granules, in particular of filling materials for artificial lawns.
There was, in addition, a desire for a fast test for determining the strength and the adhesion of material layers on surfaces or in interlayers of multilayer granules.
It should be possible for the test to be carried out as quickly as possible and as effectively as possible and to be used as universally as possible, and to permit the abrasion of various granules to be classified as accurately as possible. It should in this case be suitable for testing on coated rubber particles, in particular.
Furthermore, the fast test should fulfil the following conditions where possible:
These and further objects which result from the contexts discussed are achieved by providing a fast test having all the features of Patent Claim 1. Particularly expedient variants of the fast test are described in the subclaims, which are referred back.
By virtue of the fact that a test is carried out in which
Moreover, the use of the test results in numerous further advantages:
The inventive test serves for quickly determining the abrasion resistance of granules, expediently of inorganic or organic granules, preferably of plastic granules, with particular preference of coated plastic granules, in particular of coated rubber particles which are used, inter alia, as bedding material or as a loose elastic layer for artificial lawns or other floor coverings.
Generally, the rubber particles are of irregular n-polygon shape and preferably have a mean size of between 0.4 mm and 4.0 mm. The maximum particle size of the particles is preferably less than 10 mm, with a particular preference less than 7 mm. The minimum particle size of the particles is preferably greater than 0.1 mm, with particular preference greater than 0.5 mm. The individual rubber particles are preferably provided with a 5 μm to 35 μm thick coat. The coat preferably forms a permanently elastic coating which is intended largely to prevent the washing out of pollutants such as, for example, zinc. Moreover, this encapsulation is intended to reduce a rubber smell typical of old rubber. Further details relating to such plastic granules can be gathered, for example, from European Patent Application EP 1 416 009 A1.
The inventive test is particularly capable of differentiating effectively between different coatings. Thus, the quality of coloured coatings can be assessed by a more or less strong coloration of the wall of the cutting mill after the abrasion test has been carried out. The degree of colouring of the mill wall can be determined, for example, by a visual comparison with various comparative colourings. Alternatively, it is also possible to apply other suitable methods for determining attachments on the mill wall after the carrying out of the abrasion test, in order to establish to what extent a curing of layers has advanced, this being advantageous in the case of colourless coating systems, in particular.
The inventive test can, furthermore, also be used to assess the bonding of a composite material. To this end, it is preferred to examine particles which have been obtained from the composite material and have, preferably, been cut, punched or broken from the composite material.
The inventive test comprises the following steps:
A) Milling in a cutting mill
An attempt is firstly made to comminute the granules at least partially by milling. To this end, use is made within the scope of the present invention of a cutting mill which usually consists of a horizontally or vertically arranged rotor which is fitted with blades which in the context of a first particularly preferred embodiment of the present invention operate against blades anchored in the housing of the mill. A diagrammatic sketch of such a mill is illustrated in Römpp Lexikon Chemie, Publisher: J. Falbe, M. Regitz, 10th Edition, Georg Thieme Verlage, Stuttgart, N.Y., 1998, Volume: 4, Headword: “Mühle”, page 2770. Accordingly, reference is made to this document and the references named for further details.
In the context of a second particularly preferred embodiment of the present invention, the housing of the mill does not comprise any anchored blades, and so the milled granules can more easily be taken out of the housing.
The operating principle of the cutting mill is preferably cutting/impact.
The intensity of the milling can be controlled via the energy output by the mill. It is preferred to make use within the scope of the present invention of cutting mills which output an energy of the cutting mill in the range from 10 W to 400 W, particularly in the range from 50 W to 300 W.
The rotational speed of the cutting mill is preferably in the range from 100/min to 30000/min, in particular in the range from 1000/min to 25000/min.
The peripheral speed of the cutting mill is preferably in the range from 10 m/s to 100 m/s, in particular in the range from 20 m/s to 80 m/s.
The dimensioning of the mill can be freely selected in principle, and be adapted to the requirements of the individual case. The milling chamber of the cutting mill is expediently filled during milling to at least 10%, referred to the maximum useful volume of the cutting mill.
The cutting mill and the cutting tool are preferably fabricated from a harder material than the granules to be examined. The use of milling chambers and cutting blades made from stainless steel, in particular from stainless steel 1.4034, has proved itself, in particular.
Within the scope of the present invention, the milling material is preferably placed in the chamber of the cutting mill and subjected to a shear load by a stainless steel beater within a prescribed loading time (“milling period”). This give rise to mutual friction, striking and comminution of granules or of layers on the granules. Fast testing of the abrasive stability of granules, in particular of coated plastic granules, is achieved owing to the massive and complex nature of the shears. The results of the test are chiefly influenced by the following variables:
Again, the results are influenced by the duration of the milling. For the purposes of the present invention, it is preferred to select milling periods in the range from 5 seconds to 10 minutes, in particular in the range from 5 seconds to 150 seconds.
The action of the milling force of the cutting mill can occur continuously or discontinuously. A mode of procedure has particularly proved itself in which the milling force is preferably not varied during the milling.
If required, the temperatures of the milling chamber of the cutting mill can be controlled, in particular the chamber can be heated or cooled, during milling in order to obtain findings relating to the abrasion behaviour of the granules at other temperatures.
It is also conceivable to control the temperature in a changing fashion during the course of milling. To this end, it is preferred to introduce a suitable, thermally controlled liquid such as, for example, water, into the heating/cooling chamber of the milling chamber.
Cutting mills suitable for the purposes of the present invention are commercially available. The following mills have very particularly proved themselves:
After the milling, the particle size distribution of the milled product is determined by sieve analysis, the procedure preferably being along the lines of DIN 53 477 (November 1992).
It is preferred to use round analytical sieves (called sieves, for short) whose sieve frames preferably consist of metal. The sieves preferably have a nominal diameter of 200 mm. The sieve cover, all sieve frames and the sieve pan preferably fit onto or into one another in a tight-sealing manner. The sieves are preferably stretched with metal wire mesh in accordance with DIN ISO 3310 Part 1. in many cases, a sieve assembly of 6 sieves with metal wire mesh (mesh plies: 63 μm, 125 μm, 250 μm, 500 μm, 1 mm, 2 mm) is sufficient. For the purposes of the present invention, particular preference is given to a sieve assembly which comprises a 500 μm sieve and a base.
Because of the risk of corrupting the results and damaging the sieve with metal wire mesh, it is recommended not to use mechanical sieving aids such as rubber cubes.
It is preferable to ensure through the selection of the flat sieve machine that separation into grain fractions which correspond to the sieving material is terminated after 15 minutes. The separation is preferably achieved by a horizontal, circular movement of the sieve assembly at a rotational frequency of preferably 300±30 min−1 and with an amplitude of 15 mm.
It is preferred to sieve discontinuously, with particular preference in a plurality of intervals, with very special preference in 3 to 10 intervals, in particular in 5 intervals. In this case, the intervals are preferably of the same length and are expediently the length of 1 minute to 5 minutes, in particular 3 minutes. After each interval, the sieving is preferably interrupted and then restarted anew. This can be programmed on the sieve machine, if appropriate.
Suitable sieve machines are commercially available for the purposes of the present invention. The following sieve machine has proved itself very particularly:
The determination of the particle size distribution is performed in a way known per se by weighing the sieves.
The result of the sieve analysis is compared with at least one reference value in order to classify the abrasion of the granules examined.
In this case, the determined grain size distribution of the milled product is preferably compared with the result of at least one other set of granules in order to classify the abrasion of the examined granules by comparison with the other set of granules.
Within the context of a further preferred embodiment of the present invention, the determined grain size distribution of the milled product is compared with the grain size distribution of the unmilled starting material in order to classify the abrasion of the examined granules.
Within the context of a third preferred embodiment of the present invention, the determined grain size distribution of the milled product is compared with at least one prescribed limiting value in order to classify the abrasion of the examined granules.
Moreover, the portion of particles smaller than 500 μm, in particular, has proved to be particularly suitable for the purposes of the present invention in order to assess the abrasion of the particles.
D) Optional: Testing of deposits on the walls of the milling chamber
In the context of a particularly preferred variant of the present invention, the walls are tested after the milling with regard to possible deposits that have been caused by the shear loading of the granules in the cutting mill. By optical comparison (for example with the aid of suitable reference samples, references, reference scales), it is generally possible to estimate or classify the strength and the adhesion of material layers on surfaces or in interlayers of multilayer granules.
The invention is explained further below with the aid of a plurality of examples without thereby aiming to restrict the idea of the invention.
A plurality of samples were examined in the same way.
20 g of milling material are filled into the chamber of the cutting mill. A mill from the manufacturer IKA-Werke GmbH & Co. KG, model Universalmühle M20, is used as analytical mill. The chamber is sealed by the appropriate devices on the cover, and the milling material is milled for 110 seconds at room temperature by means of a 15° C. cooling water temperature and a 500-1000 ml/minute volume flow for the cooling of the milling pot. The milled specimen is transferred onto the previously weighed sieve by means of a hairbrush.
After the milled specimen has been transferred to the weighed sieve of a suitable sieving stack by means of a hairbrush, the wall of the analytical mill is examined visually for paint residues or deposits. The paint residues or deposits are compared with suitable references.
The sieving stack (for example 500 μm and base), to which the specimen is applied, is placed on a Retsch sieve machine, Model AS 400 Control, and the sieves are carefully clamped in by means of the sieve clamping unit. The sieve system is thereby closed. The specimen is subjected to a sieve analysis (along the lines of DIN 53477 with 5 intervals every 3 minutes).
The individual sieve residues are determined by means of a balance.
The results are evaluated as follows:
Sieve residue (%) =[sieve residue (g)−sieve tare (g)]*100/specimen initial weight (g)
Abrasion produced (%) =the difference in the particles <500 μm between milled and unmilled specimens
Number | Date | Country | Kind |
---|---|---|---|
10 2009 000 175.1 | Jan 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/067974 | 12/29/2009 | WO | 00 | 6/20/2011 |