The present invention relates to portfolio risk management, and more particularly to calculating the Conditional Value-at-Risk (CVaR), a widely used risk measure, for a portfolio.
One of the main objectives of portfolio risk management is to evaluate and improve the performance of the portfolio while reducing exposure to a financial loss. A financial portfolio refers to a collection of investments owned by an individual or an organization. An investment includes, but is not limited to, a stock, a bond, a currency, a derivative, a mutual fund, a hedge fund, cash equivalents, etc. A risk refers to a likelihood of losing investment values in a portfolio. Estimating the risk of a portfolio through a simulation (e.g., Monte Carlo simulation or any other equivalent simulation), is a fundamental task in portfolio risk management. Different measures of risk call for different simulation techniques.
A standard benchmark for a measurement of a risk is “Value-at-Risk” (VaR). For a given confidence level β(0<β<1, typical β=95%), the β-level VaR is the loss in the portfolio's value that is exceeded with the probability 1−β. However, as a risk measure, VaR lacks coherency in the sense that it does not necessarily encourage diversification. This is because the VaR value of a combination of two portfolios can be greater than the sum of VaR values of the individual portfolios. Philippe Artzner, et al. “Coherent Measure of Risk,” Mathematical Finance, vol. 9, no. 3, July 1999, pp. 203-228, wholly incorporated by reference, describes VaR in detail.
An alternative risk measure to VaR is “Conditional Value-at-Risk” (CVaR), which is also known as “Average Value-at-Risk”, “Mean Excess Loss”, “Mean Shortfall” or “Tail VaR”. For a given level β, the β-level CVaR value is the conditional expectation of the loss above the β-level VaR value. The value of CVaR is always greater than or equal to that of the corresponding VaR. CVaR can be calculated by generating random samples to simulation losses of a portfolio, and then averaging those samples that are greater than the VaR value.
In one embodiment, the present invention describes a system, method and computer program product for measuring a risk of a portfolio.
In one embodiment, there is provided a system for measuring a risk of a portfolio. The system comprises at least one memory device and at least one processor connected to the memory device. The system estimates the CVaR (Conditional Value-at-Risk) of the portfolio.
In a further embodiment, there is provided a method for measuring a risk of a portfolio, the method comprising of estimating, by a computing system, a β-level CVaR of a portfolio where β is a real number between 0 and 1.
In a further embodiment, the portfolio comprises n number of assets, and ai, i=1, . . . , n, is the number of shares invested in an asset i.
In a further embodiment, a Gaussian copula model captures the interdependency between the assets in the portfolio. The Gaussian copula model is represented by n marginal Cumulative Distribution Functions (CDF) Fi(·), and a n×n matrix ΣZ, wherein Fi(·) is a marginal CDF of the potential loss of asset i, and ΣZ is a correlation matrix that captures interdependencies among asset losses.
In a further embodiment, the computing system applies a singular value decomposition or other equivalent matrix decomposition technique on the correlation matrix ΣZ to decompose it as ΣZ=UTDU, where D is a diagonal matrix with non-negative diagonal entries, and U is a unitary matrix (i.e., UTU=UUT=In, where In is the n×n identify matrix). The computing system generates J number of sample points V1, . . . , VJ from a standard n-dimensional multivariate normal distribution whose mean value is zero and whose correlation matrix is In. The computing system then creates J number of points Z1, . . . , ZJ, by multiplying D1/2 and UT to V1, . . . , VJ as Zj=D1/2UTVj, where an index j ranges from 1 to J. The computing system further creates J number of points X1, . . . , XJ by calculating Xij=Fi−1(Φ(Zij)), where the asset i ranges from 1 to n, the sample point index j ranges from 1 to J, Zij is the i-th entry of Zj, Xij is the i-th entry of Xj, Fi−1(·) is the inverse function of Fi(·), and Φ(·) is the univariate standard normal CDF. The computing system computes empirical losses L1, . . . , LJ as Lj=aTXj, where the index j ranges from 1 to J. The computing system then sorts L1, . . . , LJ in an ascending order. Let L(1), . . . , L(J) denote the sorted L1, . . . , LJ with L(1)≦ . . . ≦L(J), and K denote the largest integer such that J−K≧J (1−β), i.e., K=max{j|J−j≧J(1−β), j=1, . . . , J}. The computing system estimates a β-level VaR of total portfolio loss L as L(K). The computing system divides points X1, . . . , XJ into two groups, a first group and a second group. The first group includes those Xj's that satisfy aTXj≧L(K). The second group includes remainders. The computing system divides points V1, . . . , VJ into two groups, a third group and a fourth group. The third group includes those Vj's whose corresponding Xj's belong to the first group. The fourth group includes remaining Vj's. The computing system finds a hyper-plane that separates the third group and the fourth group. In one embodiment, to find the separating hyper-plane, the computing system applies a binary classification technique or other classification technique to the points V1, . . . , VJ. The computing system represents the separating hyper-plane as f(x)=kTx−b=0, where k is a unit normal vector (i.e., kTk=1) of the function, |b| (i.e., the absolute value of b) is a distance from the origin (0,0) to the hyper-plane. The computing system computes a shifting amount ΔZ as ΔZ=bD1/2UTk. The computing system shifts the points Z1, . . . , ZJ by ΔZ, and creates points Y1, . . . , YJ from the shifted points as Yij=Fi−1(Φ(Zij+ΔZi)), where the asset i ranges from 1 to n, the index j ranges 1 to J. The computing system computes a set of likelihood ratios w1, . . . , wJ as
where the index j ranges from 1 to J, φZ(·) is the joint probability density function (PDF) of a n-dimensional multivariate normal distribution whose mean value is zero, and whose correlation matrix is the correlation matrix ΣZ, and φZ+ΔZ(·) is the joint PDF of a n-dimensional multivariate normal distribution whose mean value is ΔZ=bD1/2UTk and whose correlation matrix is the correlation matrix ΣZ. The computing system computes “exaggerated” empirical losses {tilde over (L)}1, . . . , {tilde over (L)}J as {tilde over (L)}j=aTYj, j=1, . . . , J, and sorts {tilde over (L)}1, . . . , {tilde over (L)}J in an ascending order, and denotes the sorted a {tilde over (L)}1, . . . , {tilde over (L)}J as {tilde over (L)}(1), . . . , {tilde over (L)}(J) with {tilde over (L)}(1)≦ . . . ≦{tilde over (L)}(J). Let w(j) be the corresponding likelihood ratio of the j-th smallest element {tilde over (L)}(j). The computing system finds the largest integer S between 1 and J such that the sum of w(j) from S to J is larger than J(1−β), i.e.,
The computing system estimates the β-level CVaR value of the total portfolio loss L, CVaRβ(L) as
The accompanying drawings are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification.
A portfolio may comprise an arbitrary number of assets. The potential loss of each asset is a random variable that may follow an arbitrary probability distribution. Gaussian copula model or other equivalent models captures interdependence among asset losses in the portfolio. The present invention describes a system, method and computer program product to estimate CVaR (Conditional Value-at-Risk) of the portfolio.
More specifically, let n denote the number of assets included in the portfolio, random variable Q1, i=1, . . . , n, denote a potential loss of an asset i, and ai, i=1, . . . , n, denote the number of shares invested in the asset i. A total portfolio loss L can be represented by L=a1Q1+ . . . +anQn=aTQ, where a=[a1, . . . , an]T and Q=[Q1, . . . , Qn]T are column vectors of ai's and Qi's, and aT represents the transpose of column vector a. The present invention describes a system, method and computer program product to estimate, CVaRβ(L), a β-level CVaR, of the portfolio, where β is a real number between 0 and 1.
In one embodiment, interdependence among asset losses Qi's is captured by a Guassian copula model or other equivalent models. The Gaussian copula model consists of n number of culmulative distribution functions (CDF) corresponding to n number of random variables Qi's, and a n×n correlation matrix. Let Fi(·) denote the CDF of Qi, and ΣZ denote the correlation matrix.
At step 110, the computing system applies a singular value decomposition or other equivalent matrix decomposition technique on the correlation matrix ΣZ to decompose it as Σz=UTDU, where D is a diagonal matrix with non-negative diagonal entries, and U is a unitary matrix (i.e., UTU=UUT=In, where In is an n×n identify matrix). Note that this is possible because ΣZ is a correlation matrix and thus is positive semi-definite.
At step 115, the computing system generates J number of sample points V1, . . . , VT from a standard n-dimensional multivariate normal distribution whose mean value is zero and whose correlation matrix is In. The computing system then creates J number of points Z1, . . . , ZJ, e.g., by multiplying Dc and UT to V1, . . . , VJ as Zj=D1/2UTVj, where an index j ranges from 1 to J.
At step 120, the computing system further creates J number of points X1, . . . , XJ, e.g., by calculating Xij=Fi−1(Φ(Zij)), where the asset i ranges from 1 to n, a sample point index j ranges from 1 to J, Zij is the i-th entry of Zj, Xij is the i-th entry of Xj, Fi−1(·) is the inverse function of Fi(·), and Φ(·) is the univariate standard normal CDF.
At step 125, the computing system computes empirical losses L1, . . . , LJ as Lj=aTXj, where the index j ranges from 1 to J. The computing system then sorts L1, . . . , LJ, for example, in an ascending order. Let L(1), . . . , L(J) denote the sorted L1, . . . , LJ with L(1)≦ . . . ≦ . . . L(J), and K denote the largest integer such that J−K≧J(1−β), i.e.,
K=max{j|J−j≧J(1−β), j=1, . . . , J}.
At step 130, the computing system estimates a β-level VaR (Value-at-Risk) of the total portfolio loss Las L(K). At step 135, the computing system divides points X1, . . . , XJ, for example, into two groups, a first group and a second group. The first group includes those Xj's that satisfy aTXj≧L(K). The second group includes remainders. At step 140, the computing system divides points V1, . . . , VJ into two groups, a third group and a fourth group. The third group includes those Vj's whose corresponding Xj's belong to the first group. The fourth group includes remaining Vj's.
At step 150, the computing system finds a hyper-plane that separates the third group and the fourth group. In one embodiment, to find the separating hyper-plane, the computing system applies a binary classification technique or other classification technique to the points V1, . . . , VJ. See, for example, S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica 31, 2007, pp. 249-268, wholly incorporated by reference as if set forth herein, for details on classification techniques. The computing system represents the separating hyper-plane as f(x)=kTx−b=0, where k is a unit normal vector (i.e., kT k=1) of the hyper-plane, |b| (i.e., the absolute value of b) is a distance from the origin (0,0) to the hyper-plane.
At step 155, the computing system computes a shifting amount ΔZ as ΔZ=bD1/2UTk.
At step 160, the computing system shifts the points Z1, . . . , ZJ by ΔZ, and creates points Y1, . . . , YJ from the shifted points as Yij=Fi−1(Φ(Zij+ΔZi)), where the asset i ranges from 1 to n, the index j ranges 1 to J. At step 165, the computing system computes a set of likelihood ratios w1, . . . , wJ as
where the index j ranges from 1 to J, Φz(·) is the joint probability density function (PDF) of a n-dimensional multivariate normal distribution whose mean value is zero, and whose correlation matrix is the correlation matrix ΣZ, and ΦZ+ΔZ(·) is the joint PDF of a n-dimensional multivariate normal distribution whose mean value is ΔZ=bDcUTk and whose correlation matrix is the correlation matrix ΣZ.
At step 170, the computing system computes “exaggerated” empirical losses {tilde over (L)}1, . . . , {tilde over (L)}J as {tilde over (L)}j=aTYj, j=1, . . . , J, and sorts {tilde over (L)}1, . . . , {tilde over (L)}J, for example, in an ascending order, and denotes the sorted {tilde over (L)}1, . . . , {tilde over (L)}J as {tilde over (L)}(1), . . . , {tilde over (L)}(J) with {tilde over (L)}(1)≦ . . . ≦{tilde over (L)}(J). Let w(j) be the corresponding likelihood ratio of the j-th smallest element {tilde over (L)}(j). At step 175, the computing system finds the largest integer S between 1 and J such that the sum of w(j) from S to J is larger than J(1−β), i.e.,
At step 180, the computing system estimates the β-level CVaR value of the total portfolio loss L, CVaRβ(L) as
The estimated β-level CVaR value of the total portfolio loss L reflects a possible loss in the portfolio. Thus, a user (e.g., a fund manager, a stock portfolio manager, etc.) may utilize this estimated β-level CVaR value of the total portfolio loss L to find out a possible or potential loss in an asset portfolio.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with a system, apparatus, or device running an instruction.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with a system, apparatus, or device running an instruction.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may run entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which run via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which run on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more operable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be run substantially concurrently, or the blocks may sometimes be run in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Number | Name | Date | Kind |
---|---|---|---|
6085175 | Gugel et al. | Jul 2000 | A |
6609109 | Bradley et al. | Aug 2003 | B1 |
7409357 | Schaf et al. | Aug 2008 | B2 |
7546270 | Zhao | Jun 2009 | B1 |
7778897 | Rachev et al. | Aug 2010 | B1 |
7930232 | Cooper et al. | Apr 2011 | B2 |
8112340 | Watson et al. | Feb 2012 | B2 |
20020161690 | McCarthy et al. | Oct 2002 | A1 |
20030061152 | De et al. | Mar 2003 | A1 |
20030115125 | Lee et al. | Jun 2003 | A1 |
20030139993 | Feuerverger | Jul 2003 | A1 |
20050033678 | Huneault | Feb 2005 | A1 |
20050033679 | Rachev et al. | Feb 2005 | A1 |
20050065754 | Schaf et al. | Mar 2005 | A1 |
20050207531 | Dempsey et al. | Sep 2005 | A1 |
20060116945 | Nishikawa | Jun 2006 | A1 |
20070027698 | Daul et al. | Feb 2007 | A1 |
20070156555 | Orr | Jul 2007 | A1 |
20080133427 | Watson et al. | Jun 2008 | A1 |
20080294565 | Kongtcheu | Nov 2008 | A1 |
20090006275 | Takano et al. | Jan 2009 | A1 |
20090018966 | Clark et al. | Jan 2009 | A1 |
20090112774 | Meucci | Apr 2009 | A1 |
20090182598 | An et al. | Jul 2009 | A1 |
20090240632 | Cunningham et al. | Sep 2009 | A1 |
20090271230 | Huang et al. | Oct 2009 | A1 |
20100145875 | Schmid et al. | Jun 2010 | A1 |
20100332411 | Rachev et al. | Dec 2010 | A1 |
20110035073 | Ozog | Feb 2011 | A1 |
20110145168 | Dirnstorfer et al. | Jun 2011 | A1 |
20110276514 | Kalagnanam et al. | Nov 2011 | A1 |
20120185406 | Ghosh et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 2009009593 | Jan 2009 | WO |
Entry |
---|
Computational aspects of minimizing conditional value-at-risk; Künzi-bay, Alexandra; Mayer, János; Computational Management Science 3. 1; Jan. 2006; 26-pages. |
Conditional value at risk and related linear programming models for portfolio optimization; Mansini, Renata; Ogryczak, Wlodzimierz; Speranza, M Grazia; Annals of Operations Research 152. 1; Jul. 2007; 31-pages. |
An estimation-free-robust conditional value-at-risk portfolio allocation model; Jabbour, Carlos;Peña, Javier F;Vera, Juan C;Zuluaga, Luis F; The Journal of Risk; Fall 2008; 11, 1; 22-pages. |
Portfolio Optimization under Lower Partial Risk Measures; Konno, Hiroshi;Waki, Hayato;Yuuki, Atsushi; Asia-Pacific Financial Markets; Jun. 2002; 9, 2; 14-pages. |
Valid inequalities and restrictions for stochastic programming problems with first order stochastic dominance constraints; Nilay Noyan and Andrzej Ruszczynski; Mathematical Programming 114. 2; Aug. 2008; 28-pages. |
Efficient execution in the secondary mortgage market—a stochastic optimization model using CVaR constraints; Wang, Chung-Jui and Uryasev, Stan; The Journal of Risk; Fall 2007; 10, 1; 26-pages. |
Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management; Zhu, Shushang; Fukushima, Masao; Operations Research, vol. 57, No. 5; Sep.-Oct. 2009; 17-pages. |
Algorithms for handling CVaR constraints in dynamic stochastic programming models with applications to finance; Fábián, Csaba I and Veszprémi, Anna; The Journal of Risk vol. 10, No. 3; Spring 2008; 21-pages. |
Stochastic models for risk estimation in volatile markets—a survey; Stoyan V. Stoyanov; Annals of Operations Research, 176, 1; Apr. 2010; 18-pages. |
Strategic foreign reserves risk management—Analytical framework; Stijn Claessens and Jerome Kreuser; Annals of Operations Research, 152, 1; Jul. 2007; 36-pages. |
Integrated Risk Return Optimization Approach for the Bank Portfolio; Theiler, Ursula A; Finance India; Dec. 2003; 17, 4; 7-pages. |
Optimal selection of a portfolio of options under Value-at-Risk constraints—a scenario approach; M. Schyns; Annals of Operations Research, 181, 1; Dec. 2010; 27-pages. |
Credit risk optimization using factor models; David Saunders; Annals of Operations Research, 152, 1; Jul. 2007; 30-pages. |
Generalized deviations in risk analysis; R. Tyrrell Rockafellar; Finance and Stochastics, 10, 1; Jan. 2006; 25-pages. |
Portfolio Optimization with Conditional Value-at-Risk Objective and Constraints; 2002; 26-pages. |
Kotsiantis, S.B., “Supervised Machine Learning: A Review of Classification Techniques” Informatica (2007) pp. 249-268, vol. 31. |
Artzner, P. et al., “Coherent Measures of Risk” Mathematical Finance (1999) pp. 203-228, vol. 9(3). |
Luthi, H.J. et al., “Convex Risk Measures for Portfolio Optimization and Concepts of Flexibility” (Jan. 26, 2005) pp. 1-21. |
Niaki, S. et al., “Generating Correlation Matrices for Normal Random Vectors in NORTA Algorithm Using Artificial Neural Networks” Journal of Uncertain Systems (2008) pp. 192-201, vol. 2(3). |
Benninga, S. et al., “Value-at-Risk (VaR)” Mathematica in Education and Research (1998) pp. 1-8, vol. 7(4). |
Mosegaard, K. et al., “Monte Carlo Sampling of Solutions to Inverse Problems” Journal of Geophysical Research (1995) pp. 431-448, vol. 100(B7). |
Baker, K., “Singular Value Decomposition Tutorial” (Mar. 29, 2005) pp. 1-24. |
Pflug, G., “Some Remarks no the Value-at-Risk and the Conditional Value-at-Risk” Department of Statistics and Decision Support Systems University of Vienna, Chapter 1, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20120185406 A1 | Jul 2012 | US |