This invention relates to electronic circuits and more particularly relates to voltage and current reference circuits.
Voltage and current reference circuits find many applications in electronic circuits including Flash and other types of electronic memory device applications. The bandgap reference circuit is a common circuit solution for supplying a voltage or current reference for such applications.
ΔVbe=VBE,Q2−VBE,Q1=VTIn(IC/IS)−VTIn(IC/nIS)=k(T/q)In(n).
ΔVbe exhibits a positive temperature coefficient (+TC). If the positive temperature coefficient of ΔVbe is combined with VBE,Q3, which has a negative temperature coefficient (−TC), along with the correct weighting ratios of R1 and R2, VREF will have approximately a zero temperature coefficient, and VREF will be independent of temperature. This ratio is determined by taking the equation for VREF that incorporates all temperature dependencies, differentiating with respect to temperature, and setting the equation equal to zero. For example, from
VREF=VBE,Q3+R2(mIC)=VBE,Q3+R2(mΔVbe/R1)=VBE,Q3+m(R2/R1)In(n)kT/q (1)
and:
∂VREF/∂T=∂Vbe/∂T+m(R2/R1)In(n)k/q (2)
As discussed, to have a reference that is substantially independent of temperature, equation (2) should be zero, or:
∂VREF/∂T=∂Vbe/∂T+m(R2/R1)In(n)k/q=0 (2)′
If we assume a typical value of positive temperature coefficient for ∂Vbe/∂T:
∂Vbe/∂T=−1.5 mV/° K
When this value is substituted into equation 2′, and solved for VREF, a new value for VREF is obtained having a zero temperature coefficient, where:
VREF=1.25V
This is well known by those skilled in the art of bandgap reference circuits.
The above explanation of prior art circuit 100 of
Additionally, as device densities and speed requirements continue to increase, the speed requirement of the bandgap reference circuit may need to increase to keep pace with the remainder of the circuit, including a bandgap reference circuit used to supply, for example, the reference voltage for a voltage booster of a memory circuit. Further, as supply voltage levels decrease due to these higher density architectures, device speed requirements may be increasingly difficult to obtain, particularly at low supply voltage and reference levels, and at low operating currents over wide operating temperatures.
It should also be noted that in the typical bandgap reference circuit of
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended neither to identify key or critical elements of the invention nor to delineate the scope of the invention. Rather, its primary purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
The present invention relates to an electronic circuit and a method for producing a fast reference voltage or reference current. A bandgap reference circuit includes a current generation circuit connected to a voltage generation circuit that in turn is connected to a smart clamping circuit. A discharge circuit is further connected to the current generation circuit and the voltage generation circuit. The bandgap reference circuit may be used to supply, for example, the reference voltage for a voltage booster in a memory circuit. The discharge circuit initially discharges a residual potential in the current and voltage generation circuits to improve repeatability.
A start circuit within the current generation circuit then initializes the reference output to about the supply voltage to improve the speed and settling time of the output signal. The current generation circuit sources a current to the voltage generation circuit that translates the current that is proportional to a temperature into a reference voltage signal (FVREF). The smart clamping circuit limits the reference voltage at high temperatures, for example, with a clamping voltage and a load resistance across the reference voltage. The clamping voltage and the load resistance quickly lowers the reference voltage FVREF to the final level, thereby producing a stable, fast reference voltage signal FVREF that is substantially independent of supply voltage and process variations.
According to one aspect of the present invention, the discharge circuit comprises MOS transistors connected to the circuit ground for discharging any residual potentials which may remain in the current and voltage generation circuits. This feature improves the settling time and repeatability of the output reference voltage FVREF.
In another aspect of the invention, the current generation circuit comprises a current mirror circuit comprising a cascode arrangement of first and second bipolar and first and second MOS transistors along with a first resistance.
In yet another aspect of the invention, the first resistance of the current generation circuit comprises a poly resistor without silicide that has a negative temperature coefficient. This provides a reference current having a positive function of temperature to lower the effective ∂Vbe/∂T, which advantageously lowers the FVREF to keep the voltage generation circuit operating in saturation particularly at low supply voltages, thereby providing voltage reference stability.
In still another aspect of the present invention, a smart clamping circuit comprises one or more diode-connected transistors and a resistor that are connected across the output of the voltage generation circuit forming the output of the bandgap reference circuit. The clamping circuit provides a clamping voltage and a load resistance, that operates to provide a reference clamping function at high temperatures. The clamping voltage and the load resistance, quickly limit and lower the reference voltage output FVREF to the final value. The presence of the clamp, although affecting the final value of FVREF, provides a fast and stable reference voltage over a wide range of temperature and supply voltage variations.
The aspects of the invention find application in devices that include, for example, high speed voltage booster circuits requiring lower reference voltages and operating at low supply voltage or low supply current levels, while accommodating a wide range of supply voltages, temperatures and process variations.
To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative embodiments of the invention. These embodiments are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The present invention will now be described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. The present invention relates to an electronic circuit for producing a fast voltage or current reference which is substantially independent of VCC fluctuations, and which may be used, for example, to provide a fast low level reference voltage for a voltage booster for the read mode operations of memory cells. The invention comprises current and voltage generation circuits, a smart clamping circuit, and a discharge circuit.
Returning to
Initially, discharge circuit 240, comprising, for example, two MOS transistors or other switching elements coupled to circuit ground, provide a discharge path for a residual potential or charge that may be present in the voltage and current generator circuits 210, 220 to improve repeatability in the generation of the reference voltage. The discharge circuit 240, activated by the enable bar signal (ENB) 245, discharges any residual potential in the current generation circuit 210 via discharge line 250, and a residual potential in the voltage generation circuit via discharge line 255 to circuit ground. Discharge circuit 240 provides repeatable operation each time the reference circuit is started, and a predictable settling time whether the circuit was recently activated, or after a long period of inactivity.
The current generation circuit 210 receives enable signal EN 270 to begin operation, while a start circuit, enabled by a START signal 265 (e.g., provided by a control circuit that is not shown), within the current generation circuit 210 initializes the reference output FVREF 205 at about the supply voltage VCC to improve the speed and settling time of the output signal. The current generation circuit 210 sources a stable reference current 260 having a functional relationship to temperature to the voltage generation circuit 220. In the industry, another phrase is coined which states that a given value is “proportional to the absolute temperature” (PTAT). Although a “proportional” or “proportionality” term may also be used in some instances to describe the relationship between the temperature and a resistance, current, or voltage of the reference circuit, a “functional relationship” type term will generally be used herein, in the context of the present invention, to gain a broader contextual relationship. However, the use of either term, is not intended to be construed in any limiting sense. Note: the absolute temperature in accordance with the present invention generally refers to a temperature measured in degrees Kelvin (° K) relative to absolute zero (e.g., −273° C.).
In the present invention, for example, the current generation circuit 210 generates a current having a positive function of temperature (e.g., a positive temperature coefficient, or +TC). Thus, as the temperature increases, for example, the current also increases. The voltage generator 220 then translates the +TC reference current 260 from the current generator 210 into a reference voltage FVREF 205.
To quickly bring the reference voltage FVREF 205 to its final value, a smart clamping circuit 230 is also provided. Smart clamping circuit 230, in one example, applies to the reference voltage FVREF 205 a load resistance, for example, and a clamping voltage in response to a high temperature. The high temperature clamping voltage and load resistance are chosen and trimmed, respectively, to produce the final reference voltage FVREF 205 more quickly than would otherwise occur at high temperatures without substantially affecting the final value. Thus a stable, fast reference voltage signal FVREF 205 is provided that is substantially independent of supply voltage VCC and process variations.
In the following
The voltage reference circuit 300 is enabled with an enable signal EN while the complimentary enable bar signal ENB is used to initiate discharging any residual potential in the current generation circuit 310 at circuit node B2 and the voltage generation circuit 320 at circuit node B3. The voltage reference circuit 300 operation again begins within the current generation circuit 310 with a START signal which initializes the reference output FVREF 305 at about the supply voltage VCC to improve the speed and settling time of the output signal.
Designing a fast low level reference voltage FVREF 305 (e.g., about 1.25V), is difficult when the supply voltage VCC is also low (e.g., about 1.6V or less). At extreme process corners and temperatures, for example, the PMOS transistor P3 can go out of the saturation region. Thus, to keep P3 biased into saturation at these low power supply voltages, the inventors of the present invention appreciated that the reference voltage FVREF 305 should also be reduced. According to the present invention, the FVREF 305 voltage level may be reduced by reducing the “effective” |∂Vbe/∂T|, which is the effective partial differential of the base emitter voltage with respect to temperature. This is done by designing the current IC to be functionally related to the temperature. The reference current IC can be calculated as:
IC=ΔVbe/R1=((kT/q)In(n))/R1 (3)
As the silicon bandgap may be impractical to change, the inventor realized from equation (3) that the current IC may instead, be given this functional relationship to temperature in two ways: by making R1 in the denominator functionally related to the temperature, and by the temperature T in the numerator. For example, to provide a positive temperature coefficient (TC) reference current IC, a negative temperature coefficient (−TC) resistor R1 may be used in the current generation circuit 310 to provide a stable reference current IC in response to the resistor R1. To produce a resistance with a negative temperature coefficient, the inventor has used, for example, a poly resistor without silicide that yields a FVREF 305 level of 1.17V with a generally zero TC. At this FVREF level, the P3 transistor can be biased into saturation at a VCC of 1.6V, as long as the gate drive of the diode-connected transistor P1 is less than:
1.6V−1.17V=0.43V
This condition can be satisfied by choosing the size of transistors P1 and P2 to be sufficiently large.
Thus, the FVREF circuit 300 of the present invention may be used, for example, to provide a high speed reference with an accuracy of +/−40 mV in a high speed voltage booster circuit. In high speed applications of this type, the accuracy may often be traded for the speed of such a reference voltage.
According to another aspect of the present invention, the inventor realized that the settling time of the output voltage FVREF 305 may be shortened by initializing FVREF at about VCC. By contrast to a prior art voltage reference circuit, when the VREF is started at ground voltage, AC performance may be poor as the output voltage typically transitions a greater voltage differential to the final output voltage. The inventor has recognized that at extreme process variations, temperature and power supply ranges, a voltage reference circuit can have significant overshoot or undershoot which makes the repeatability of FVREF at these extreme conditions difficult.
Therefore, the inventor has found that by initializing FVREF at about VCC, that FVREF behaves much more similarly (e.g., going from VCC down to about 1.17V) at these extreme conditions. The START signal used (e.g., START of FIG. 4), is a pulse of about 2-3 ns, for example, and is applied to the START transistor. With the START signal, the START transistor momentarily grounds the gates of P1, P2, and P3, forces P1, P2, and P3 into full conduction, and momentarily forces the output voltage FVREF 305 to about VCC.
Accordingly, the reference voltage settles down to the final reference level more quickly than with a prior art circuit that starts from the ground potential and must rely on the reference current to pull the reference voltage up to the final reference voltage. This technique requires less time predominately because the supply voltage is closer to the final reference voltage than the circuit ground voltage.
The voltage generator 320 is connected to the current generator 310 translating the +TC reference current IC into a reference voltage FVREF 305. As previously described, the reference current IC in the reference current generator 310 is mirrored as mic in the voltage generator 320 through P3, R2, and Q3 to produce the reference voltage FVREF 305 (wherein m represents a size of P3). The value of FVREF may further be adjusted within the process variations by trimming resistor R2. Thus, according to the present invention, the “effective” |∂Vbe/∂T|, is made smaller because the reference current IC has a +TC due to the −TC characteristic designed into resistor R1. (see equation 3 above, having R1 in the denominator).
Although mirror current mIC through P3 increases at high temperatures, the smart clamping circuit 330 clamps the reference voltage FVREF to a final reference voltage level. The smart clamping circuit 330 brings FVREF quickly to the final level, especially at high temperature, because the VBE of the bipolar transistors decreases when temperature increases. Resistor R3 is used to fine-tune the clamp value. Resistor R3, therefore, lessens the effect of the clamp on the final value of FVREF. In this way, according to the present invention, the smart clamping circuit 330 quickly settles the reference voltage FVREF 305 to a stable final value over a wide range of supply voltages at high temperatures.
The series combination of diode-connected transistors Q4 and Q5 strongly pull down FVREF toward the final value when FVREF is close to VCC, particularly at the higher temperatures where the clamp circuit is most needed. The inventor has found that by adjusting R3, the error caused by the clamp can be controlled within 20 mV of a target reference voltage and still provide its function.
The discharge circuit 340, comprising, for example, two NMOS transistors coupled to circuit ground, provide an initial discharge path for a residual potential or charge that may be present in the current generation circuit 310 at circuit node B2 and the voltage generation circuit 320 at circuit node B3. The discharge circuit 340 provides repeatable operation each time the reference circuit is started, and a predictable settling time whether the circuit was recently activated, or after a long period of inactivity. The MOS discharge transistors are activated by the enable bar signal ENB.
The functionality of circuit 300 of
Vb(Q1)=Vb(Q2),
then
Vbe(Q2)=Vbe(Q1)+IC(Q1)*R1
or,
ΔVbe=Vbe(Q1)−Vbe(Q2)=IC(Q1)*R1
Therefore, the difference in base-emitter voltages of Q1 and Q2 is shown by the voltage existing across R1. In addition to the +TC of the ΔVbe, a −TC resistor is used for R1 to provide a +TC characteristic in IC and mIC, which permits a lower reference output voltage FVREF 305 to keep P3 in saturation at low supply voltages. The start circuit comprises an NMOS transistor N3 enabled by start signal START in the present example, to force full conduction of P1—P3 for starting the FVREF output at about VCC for faster settling times and lower operating current IC.
The current IC supplied by P1 to Q1 is mirrored to P3 within the voltage generator circuit 320. Since, in this particular embodiment, P3 and P1 have a W/L size ratio of m/1, P3 conducts a current of mIC. P3 feeds R2 and Q3 which provide a voltage drop across R2 and a Vbe(Q3) voltage drop across Q3 because Q3 is biased as a diode.
The enable signal EN drives a PMOS transistor P4 to enable the reference circuit 300. The enable bar signal ENB (the EN complement) is received by, for example, two NMOS transistors N1 and N2 of the discharge circuit 340 to discharge any residual voltage potential or charge remaining at the B2 circuit node of the current generator 310 and B3 circuit node of the voltage generator 320. The discharge circuit maintains consistent, repeatable results of the output voltage VREF 305 over large extremes of temperature, process variations, and supply voltage.
In the smart clamping circuit 330, two diode-connected transistors Q4 and Q5 supply the clamping voltage for the reference voltage at higher temperatures, while series resistor R3 lessens the impact of the clamp to the final value of FVREF 305. Thus, a bandgap reference voltage is provided for fast low supply voltage applications that are
substantially independent of extremes of temperature, process variations, and supply voltage.
Prior to a new read access 405 of a new address 415 which begins at time t0 (420), the enable signal EN 425 applied to the reference circuit 300 is low, while its' complimentary signal, enable bar ENB 430 is high. While EN 425 is low, the enable PMOS transistor in the current generator 310 pulls the gates of PMOS transistors P1, P2, and P3 to VCC holding P1, P2, and P3 in an off-state. Simultaneously, complimentary signal ENB 430 applied to the two NMOS transistors of the discharge circuit 340 is high, forcing the bases of Q1 and Q2 at circuit node B2, and the base of Q3 at circuit node B3 to discharge any remaining residual potential which may remain from a last reference circuit operation. This reset, or pre-discharge type feature maintains repeatable circuit performance over wide ranges of supply voltage, temperature, and process variations, as well as a wide range of circuit idle periods.
At time t0 (420), EN 425 goes high enabling the current generator 310 and the voltage generator 320, while complimentary signal ENB 430 goes low to remove the discharge condition from these circuits. Since speed is a high priority during the read operations, the inventors have also taken advantage of the START timing portion of the present invention, wherein the START signal 435 applies a high going pulse of about 2-3 ns to the NMOS START transistor N3 within the current generator circuit 310. The NMOS START transistor N3 momentarily pulls the gates of PMOS transistors P1, P2, and P3 to circuit ground, forcing P1, P2, and P3 into full conduction, and momentarily pulls the output voltage FVREF (305 of
For example, FVREF curve segment 440 represents a median supply voltage, temperature and set of process conditions affecting FVREF. FVREF 440a represents a high extreme supply voltage, temperature and set of process conditions, while FVREF 440b represents a low extreme supply voltage, temperature and set of process conditions affecting FVREF. In one exemplary testing, the fast bandgap reference voltage circuit of the present invention was evaluated using 81 various combinations of supply voltage VCC (e.g., 1.6, 1.8, and 2.0V), temperature (e.g., −40, 25, and 100° C.), and process variations (strong, typical, and weak PMOS combined with strong, typical, and weak BJT) wherein the curves shown in
At time t1 (450), for example, about 2-3 ns after time t0 (420), START signal 435 returns to a low state, removing the VCC forced pull-up to FVREF 305/440. The current mirror circuit of the current generator 310 begins operating to produce a regulated reference current having a +TC due to the −TC resistor R1 and the +TC of the ΔVbe in the current mirror circuit, while the voltage generator 320 translates the reference current into a reference voltage FVREF as FVREF approaches a final regulated value 440c. During this time, the smart clamping circuit 330, which comprises transistors Q4 and Q5 together with R3, quickly bring the reference voltage FVREF 305/440 down to the final regulated voltage value 440c especially at high temperature.
By time t2 (460), the reference voltage output FVREF 305/440 is at the final regulated value 440c, and is enabled and output to, for example, a voltage booster circuit for a memory read operation. Typically, this may occur in about 25 ns for a 50 ns read cycle. The read access continues after t2 (460) for about another 25 ns providing a regulated reference voltage output FVREF 305/440 for the reference voltage circuit 300.
Optionally, between time t2 (460) and time t3 (470), about 50 ns after a new address was accessed, enable EN 425 goes low, and enable-bar ENB 430 goes high again, and the reference voltage operation of the read access is completed.
Another aspect of the invention provides a methodology for providing and regulating a reference voltage of a reference operation in an electronic device, that may be employed in association with the fast bandgap reference devices illustrated and described herein, as well as with other devices. Referring now to
The method 500 comprises initially discharging any residual voltage or charge that may be present in current and voltage generator circuits of a fast bandgap reference voltage circuit, initializing the output reference voltage to VCC. The method 500 further comprises generating a reference current having a positive function of temperature +TC, translating the reference current into a reference voltage, and generating a clamping voltage and a load resistance. The clamping voltage is then applied to the reference voltage to limit the output of the reference voltage circuit and quickly settle the reference voltage FVREF to the final level that may be used in a voltage booster circuit.
The fast bandgap reference voltage operation method begins at 502. At 504 the current and voltage generator circuits are initially discharged of any residual potentials to the circuit ground (e.g., 0V), for example, with a high on the enable bar signal (e.g., ENB of FIG. 3), while the reference voltage circuit is disabled with a low on the enable signal (e.g., EN of FIG. 3). At 506, the FVREF output (e.g., 305 of
At 510, a resistance of a −TC resistor (e.g., R1 of
At 516, a clamping voltage is generated across the base-emitter junctions of two diode-connected transistors (e.g., Q4 and Q5 of FIG. 3), along with a load resistance (e.g., R3 of FIG. 3). Thereafter at 518, the clamping voltage and the load resistance are applied to the reference voltage to quickly limit the reference voltage, particularly at high temperatures, and provide a fast and stable regulated reference voltage FVREF (e.g., 305 of
The methodology 500 thus provides for fast, low supply voltage, low reference voltage circuit that uses a −TC resistor and the +TC ΔVbe to create a lower effective partial differential of the base emitter voltage with respect to the temperature to provide a lower reference voltage. The method 500 further uses a discharge circuit to discharge any residual potentials from the reference circuit for improved output repeatability, a start circuit to initialize the FVREF output to about VCC for a faster settling time. In addition, the method 500 uses a smart clamping circuit responsive at high temperatures, to quickly settle the reference voltage FVREF to a stable final value over a wide range of supply voltages. The reference voltage output FVREF may be applied to, for example, a voltage booster during read operations of flash memory arrays. Therefore the method 500 generates a reference voltage FVREF that is substantially independent of variations in VCC supply voltage, temperature, process corners, and circuit idle periods. Other variants of methodologies may be provided in accordance with the present invention, whereby compensation or regulation of a fast reference voltage is accomplished.
Although the invention has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, circuits, etc.), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary implementations of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the term “includes” is used in either the detailed description and the claims, such term is intended to be inclusive in a manner similar to the term “comprising.”
Number | Name | Date | Kind |
---|---|---|---|
5349286 | Marshall et al. | Sep 1994 | A |
5783935 | Kyung | Jul 1998 | A |
5920185 | Ozoe | Jul 1999 | A |
6043637 | Suzu | Mar 2000 | A |
6100677 | Farrenkopf | Aug 2000 | A |
6528978 | Lim | Mar 2003 | B2 |
20030067291 | Hong | Apr 2003 | A1 |