The present invention relates to a battery charging control scheme, and, in particular embodiments, to a method for achieving fast charging in a battery charger system.
As technologies further advance, a variety of battery powered portable devices, such as mobile phones, tablet PCs, digital cameras, MP3 players and/or the like, have become popular. Each portable device may employ a plurality of rechargeable battery cells. The plurality of rechargeable battery cells may be connected in series or in parallel so as to form a rechargeable battery pack for storing electrical energy.
According to different combinations of electrode materials and electrolytes used in rechargeable batteries, rechargeable batteries may be divided into a variety of categories. The most common rechargeable batteries include nickel-cadmium (NiCd) batteries, nickel-metal hydride (NiMH) batteries, lithium-ion batteries, lithium-ion polymer batteries, lithium-air batteries, lithium iron phosphate batteries and the like.
Battery chargers are employed to restore energy to the batteries. The battery charger is controlled to provide voltage (e.g., a constant voltage charging mode) and current (e.g., a constant current charging mode) to the battery so as to restore energy to the battery. Depending on different applications and design needs, the charging speed as well as the amount of power applied to the battery may vary.
As power consumption has become more important, there may be a need for reducing the length of time to charge the battery. However, fast charging may cause a complex charging control scheme. The complexity of achieving fast charging has become a significant issue, which presents challenges to designers of battery charger systems.
In particular embodiments, a simple control scheme may achieve fast charging and improve the performance of a battery charger system.
In accordance with an embodiment, a method comprises setting a first termination voltage, a first charging current and a first termination current in a first charging step, wherein the first termination current is a fraction of the first charging current, passing a current from a power source to a battery through a charger, wherein the charger operates in a first constant current mode and the current is equal to the first charging current, monitoring a voltage across two terminals of the battery and configuring the charger to operate in a first constant voltage mode when the voltage across the two terminals of the battery is equal to the first termination voltage and monitoring the current in the first constant voltage mode and configuring the charger to operate in a second charging step when the current is equal to the first termination current.
In accordance with another embodiment, a method comprises applying a first constant current mode to a battery through a charger, in the first constant current mode, monitoring a voltage across two terminals of the battery and configuring the charger to operate in a first constant voltage mode when the voltage across the two terminals of the battery is equal to a first termination voltage, in the first constant voltage mode, monitoring a current flowing through the battery and configuring the charger to operate in a second constant current mode when the current flowing through the battery is equal to a first termination current, wherein the first termination current is a fraction of the current flowing through the battery in the first constant current mode, in the second constant current mode, monitoring the voltage across two terminals of the battery and configuring the charger to operate in a second constant voltage mode when the voltage across the two terminals of the battery is equal to a second termination voltage and in the second constant voltage mode, monitoring the current flowing through the battery and configuring the charger to operate in a third constant current mode when the current flowing through the battery is equal to a second termination current, wherein the second termination current is a fraction of the current flowing through the battery in the second constant current mode.
In accordance with yet another embodiment, an apparatus comprises a charger configured to apply a charge current to a battery and a controller configured to monitor a voltage across two terminals of the battery and a current flowing through the battery, wherein, based on the voltage across two terminals of the battery and the current flowing through the battery, the controller configures the charger to operate in a plurality of constant current modes and a plurality of constant voltage modes, and wherein the plurality of constant current modes and the plurality of constant voltage modes are applied to the charger consecutively, and wherein the plurality of constant current modes and the plurality of constant voltage modes form a plurality of charging steps, each charging step comprising four parameters including a termination voltage, a charge current, a termination current and a time-out, and wherein a behavior of each charging step is determined by the four parameters.
An advantage of a preferred embodiment of the present invention is improving a battery charger system's performance through a multi-step fast charging control mechanism.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the various embodiments and are not necessarily drawn to scale.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to preferred embodiments in a specific context, namely a fast charging apparatus for a battery charger system. The invention may also be applied, however, to a variety of systems including a single battery cell, a plurality of battery cells connected in series, a plurality of battery cells connected in parallel, any combinations thereof and the like. Hereinafter, various embodiments will be explained in detail with reference to the accompanying drawings.
The battery 108 may be a nickel-cadmium (NiCd) battery, a nickel-metal hydride (NiMH) battery, a lithium-ion battery, a lithium-ion polymer battery, a lithium-air battery, a lithium iron phosphate battery and the like. In some embodiments, the battery 108 may comprise a single cell. In alternative embodiments, the battery 108 may comprise a plurality of rechargeable battery cells connected either in series or in parallel.
It should be noted that while
The battery charger system 100 comprises a battery charger 102 and a controller 110. The battery charger 102 is connected between the power source Vin and the battery 108. In some embodiments, the battery charger 102 provides a conductive path for charging the battery 108. In some embodiments, the battery charger 102 may be implemented as an isolated dc/dc converter, a non-isolated dc/dc converter, a linear regulator and the like.
In some embodiments, the controller 110 may be implemented as a digital controller comprising a plurality of registers. The digital controller may be implemented in hardware, software, any combinations thereof and the like. The controller 110 is employed to receive detected current (e.g., Isense) and voltage signals (e.g., VBAT) and adjust the charging process accordingly. More particularly, the detected current signal represents the current flowing through the battery 108. The detected current signal Isense can be obtained by using suitable current sensing apparatuses such as a sense resistor connected in series with the battery 108, a sense transistor connected in parallel with a main power switch of the battery charger 102, any combinations thereof and the like. The battery voltage VBAT can be directly measured across two terminals of the battery 108.
According to some embodiments, a rate of 1C represents charging a battery with consumable capacity in one hour. The “C rate” defines the current needed to fully charge a battery with capacity C in one hour. For example, a 1C rate for a 2000 mAh battery is applying 2000 mA for one hour to fully charge the battery. As such, for the same battery, a 5C rate is applying 10 A for 12 minutes to fully charge the battery.
As shown in
The five portions shown in
In some embodiments, a second termination current of the second charging step (from t2 to t4 in
It should be noted that the chart shown in
In some embodiments, a battery's voltage may drop to an unduly low output voltage after the battery has been over-discharged. The over-discharged battery may have an internal short circuit. Prior to applying fast charging to the over-discharged battery, a weak charging current is supplied to the battery until the output voltage of the battery reaches a predetermined voltage (e.g., V0 shown in
Referring back to
From t0 to t1, the charger operates in a constant current mode with a 5C charge rate. In response to the constant current mode, the battery voltage increases in a linear manner as indicated by a first upward slope 213. After the battery voltage reaches a first termination voltage V1, the charger system enters a constant voltage mode at t1 and stays at the constant voltage mode until t2 as indicated by a first straight line 214. In response to the constant voltage mode, the charge current drops in a linear manner as indicated by the first downward slope line 212. When the charge current reaches the termination current of the first charging step (4C as shown in
It should be noted that the transition described above can be achieved through a scaled approach. For example, when the charger system operates with the 5C charge rate, the scaling factor may be set as 80%. The battery charger system charges the battery with the 5C charge rate and enters the constant voltage mode and waits for the charge current to drop to 80% of 5C, which is equal to 4C. In other words, when the current flowing through the battery drops to 80% of 5C, a new constant current mode (e.g., 4C charge rate) is applied to the battery charger system. Furthermore, in the second charging step, the controller sets a second termination voltage (e.g., V2 shown in
One advantageous feature of having the scaled approach is that it is not necessary for the battery charger system to look at the next step of 4C charge since the scale factor of 80% has been internally set. The next step of 4C can be calculated based upon the first step of 5C and the scaled factor of 80%. This principle can be applicable all steps and transitions between different steps shown in
From t2 to t3, the charger operates in the constant current mode with the 4C charge rate. In response to the constant current mode, the battery voltage increases in a linear manner as indicated by a second upward slope 223. After the battery voltage reaches the second termination voltage V2, the charger system enters a constant voltage mode at t3 and stays at the constant voltage mode until t4 as indicated by a second straight line 224. In response to the constant voltage mode starting from t3, the charge current drops in a linear manner as indicated by the second downward slope line 222. When the charge current reaches the second termination current of the second charging step (e.g., 3C as shown in
From t4 to t5, the charger operates in the constant current mode with the 3C charge rate. In response to the constant current mode, the battery voltage increases in a linear manner as indicated by a third upward slope 233. After the battery voltage reaches the third termination voltage V3, the charger system enters a constant voltage mode at t5 and stays at the constant voltage mode until t6 as indicated by a third straight line 234. In response to the constant voltage mode starting from t5, the charge current drops in a linear manner as indicated by the third downward slope line 232. When the charge current reaches the third termination current of the third charging step (e.g., 2C as shown in
From t6 to t7, the charger operates in the constant current mode with the 2C charge rate. In response to the constant current mode, the battery voltage increases in a linear manner as indicated by a fourth upward slope 243. After the battery voltage reaches the fourth termination voltage V4, the charger system enters a constant voltage mode at t7 and stays at the constant voltage mode until t8 as indicated by a fourth straight line 244. In response to the constant voltage mode starting from t7, the charge current drops in a linear manner as indicated by the fourth downward slope line 242. When the charge current reaches the fourth termination current of the fourth charging step (e.g., 1C as shown in
From t8 to t9, the charger operates in the constant current mode with the 1C charge rate until the battery reaches its full capacity. In response to the constant current mode, the battery voltage increases in a linear manner as indicated by a fifth upward slope 253.
During the five-step charging process described above, the battery charge system automatically enters a new operating mode. This results in the fastest charge time possible because this control scheme does not require looking ahead to the next step and knowing the next charge setting. This simplifies the state machine of the controller 110 and makes the state machine more stable and easy to implement. Such an autonomous transition helps to improve the charge speed. As a result, the battery charger system may achieve fast charging.
Additionally, the fast charging control scheme shown in
It should be noted that the charging steps, the termination voltages, the charging currents and the termination currents in
Furthermore, the five-step charging process shown in
The method 300 starts at step 302 where the controller resets a plurality of registers. For example, various fault flags in the register unit of the controller are reset. At step 304, the controller determines whether abnormal situations have occurred. For example, an input under voltage lock out (UVLO) occurs when variable VIN_CK is set to LOW (=0). On the other hand, an excessive discharge current flowing through the battery occurs when variable DIS_CHG is set to high (=1). At step 304, if the abnormal situations have not occurred, the method 300 proceeds to step 306.
At step 306, the controller determines whether the battery is in a short circuit mode. In some embodiments, a short circuit threshold voltage is in a range from about 2.4 V to about 2.5 V. If the battery voltage is less than 2.5 V, the battery is in the short circuit mode and the controller charges the battery slowly with a first charging current until the battery voltage reaches a first predetermined threshold. In some embodiments, the first predetermined threshold is about 2.5 V. The first charging current is about 25 mA.
At step 308, if the battery voltage exceeds the first predetermined threshold (e.g., 2.5 V), the method 300 proceeds to step 310. At step 310, the controller first determines whether the battery is in a pre-charge mode. In some embodiments, the battery is in the pre-charge mode if the battery voltage is in a range from about 2.5 V to about 3.2 V.
Also at step 310, if the battery voltage is less than 3.2 V, the battery is in the pre-charge mode and the controller charges the battery with a second charging current until the battery voltage reaches a second predetermined threshold. In some embodiments, the second predetermined threshold is about 3.2 V. The second charging current is in a range from about 25 mA to about 200 mA. Also at step 310, the controller keeps detecting the battery voltage. If the battery voltage is less than the first predetermined threshold (e.g., 2.5 V), the method 300 returns to step 306 through step 314 as shown in
At step 312, the controller determines whether the battery comes out of the pre-charge mode. If the battery voltage exceeds the second predetermined threshold (e.g., 3.2 V), the method 300 proceeds to step 320. Throughout the description, the second predetermined threshold is alternatively referred to as the pre-charge threshold.
The method shown in
It should be noted that the vales of the termination voltages (e.g., 3.8 V) and the charge rates of the charging currents (e.g., 3C charge rate) are merely examples. A person skilled in the art would understand other suitable values and charge rates may be used depending on different applications and design needs.
Referring back to
Also at step 326, after the charging current is less than or equal to a fraction (n1) of the current of the first constant charging mode (ICHG1), the controller changes the charger's operation mode from the first constant voltage mode to a second constant current mode having a charge current. After that, the method 300 proceeds to step 402.
It should be noted that n1 is a user chosen number in a range from 0 to 1. Depending on different applications and design needs, n1 may vary accordingly.
At step 402, the battery enters the second charging step. In the second charging step, the second constant current mode with the 2C charge rate is applied to the battery and the battery voltage increase from about 3.8 V to about 4.2 V. At step 406, after the battery voltage reaches 4.2 V, the controller applies a second constant voltage mode to the battery, and the battery voltage stays at 4.2 V. In the second constant voltage mode, the charging current drops accordingly.
Also at step 406, after the charging current is less than or equal to a fraction (n2) of the current of the second constant charging mode (ICHG2), the controller changes the charger's operation mode from the second constant voltage mode to a third constant current mode. After that, the method 300 proceeds to step 408.
It should be noted that n2 is a user chosen number in a range from 0 to 1. Depending on different applications and design needs, n2 may vary accordingly.
At step 408, the battery enters the third charging step. In the third charging step, the third constant current mode with the 1C charge rate is applied to the battery and the battery voltage increase from about 4.2 V to about 4.4 V. At step 412, after the battery voltage reaches 4.4 V, the controller applies a third constant voltage mode to the battery, and the battery voltage stays at 4.4 V. In the third constant voltage mode, the charging current drops accordingly. Also at step 412, after the charging current is less than or equal to a fraction (n3) of the current of the third constant charging mode (ICHG3), the method 300 proceeds to step 414.
It should be noted that n3 is a user chosen number in a range from 0 to 1. Depending on different applications and design needs, n3 may vary accordingly.
The termination voltage, the charging current and the termination current (represented by a fraction) of each charging step can be saved in a user programmable control register of the controller. In a conventional one-step charger, three registers may be used to set the termination voltage, the charging current and the termination current. This conventional one-step charger can function as a multi-step charger by using a multiplexer to change the settings of these three registers at the correct time. As a result, a multi-step charger can be obtained by applying simple digital changes to the three registers of the conventional one-step charger.
At step 414, the battery operates in the third constant voltage mode. At step 418, if the battery voltage is greater than or equal to the third termination voltage (e.g., 4.4 V) and the current flowing through the battery is less than or equal to a predetermined termination current, the method 300 proceeds to a battery capacity testing phase including steps 420, 422, 424, 426, 428 and 430 shown in
At step 420, a predetermined sink current is applied to the battery for about 250 milliseconds. In some embodiments, the predetermined sink current is about 2.5 mA. At step 422, if the battery voltage is less than a predetermined battery sink voltage threshold, the method 300 proceeds to step 426. On the other hand, after applying the sink current to the battery, if the battery voltage is greater than the predetermined battery sink voltage threshold for three consecutive samples, the battery is fully charged and the method 300 proceeds to step 432 where the battery is isolated from the charger.
At step 426, a predetermined source current is applied to the battery for about 250 milliseconds. In some embodiments, the predetermined sink current is about 25 mA. At step 428, if the battery voltage is greater than a predetermined battery source voltage threshold, the method 300 return to step 420 from step 426. On the other hand, after applying the source current to the battery, if the battery voltage is less than the predetermined battery source voltage threshold for three consecutive samples, the battery is fully charged and the method 300 proceeds to step 432 where the battery is isolated from the charger.
At step 432, the output voltage of the charger is regulated at a voltage slightly higher than the fully charged voltage of the battery. For example, the fully charged voltage of the battery is 4.4 V. At step 432, the output voltage of the charger is in a range from about 4.55 V to about 4.6 V.
The method 300 includes a variety of protection steps. As shown in
Furthermore, in order to protect the battery during the fast charging process, the battery may return to the pre-charge mode when the battery voltage is less than the pre-charge threshold. For example, at step 324, if the battery voltage is less than the pre-charge threshold, the method 300 leaves the first charging step and returns to the pre-charge mode at step 310. Likewise, at step 404, if the battery voltage is less than the pre-charge threshold, the method 300 leaves the second charging step and returns to the pre-charge mode at step 310. At step 410, if the battery voltage is less than the pre-charge threshold, the method 300 leaves the third charging step and returns to the pre-charge mode at step 310. At step 416, if the battery voltage is less than the pre-charge threshold, the method 300 leaves step 414 and returns to the pre-charge mode at step 310.
Additionally, after the battery is fully charged and the method 300 stays at step 432, a voltage fluctuation at the battery may cause the charger to leave the fully charged mode. For example, at step 434, if the battery voltage is about 150 mV less than the fully charged voltage, but is greater than the pre-charge threshold, the method 300 leaves the fully charged mode and returns to step 408. Likewise, at step 436, if the battery voltage is less than the pre-charge threshold, the method 300 leaves the fully charged mode and returns to step 302.
One advantageous feature of having the method 300 shown in
Another advantageous feature of having the method 300 shown in
In
The autonomous transition between different steps (e.g., from a 3C charge rate to a 2C charge rate) has been described above with respect to
In order to compensate the voltage drop caused by the various resistive elements, a current dependent compensation factor has been added into the output voltage of the charger. For example, in a first constant voltage mode from t1 to t2, the current flowing through the battery drops in a linear manner as indicated by the line 512. In order to compensate the IR voltage drop caused by the current flowing through the battery, the output voltage of the charger drops in a similar manner as indicated by the dashed line 514.
Although embodiments of the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is related to, and claims priority to, U.S. Provisional Application No. 62/316,221, titled, “Fast Charging Apparatus and Method” filed on Mar. 31, 2016, which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62316221 | Mar 2016 | US |