The present invention relates, in general, to communication systems. More specifically, it relates to enhanced methods and apparatus for determining carrier frequency error in a receiver.
Carrier frequency error estimation is often performed in a receiver of a communication system to eliminate offsets between a received signal's actual frequency and a frequency assumed by the receiver. An optimal maximum likelihood estimator (MLE) for the offset is given by the location of the peak of a spectral plot for the signal. Used with a discrete Fourier transform (DFT), the MLE has been shown to achieve the Cramer-Rao lower bound on variance at high signal-to-noise ratios (SNR).
A phase-locked loop (PLL) may be used for carrier phase tracking. Additionally, two cascaded PLLs may be used to form a carrier frequency error estimate. Phase estimates of a first PLL “converge” to a line whose slope is proportional to the offset between the actual and assumed carrier frequencies of the received signal, while phase estimates of the second PLL converge to a constant value corresponding to the phase offset.
Other carrier frequency error estimation methods involve the processing of de-spread data samples, e.g., algorithms devised for high capacity data radio (HCDR) narrowband mode. In HCDR, the complex conjugate of a known training sequence is multiplied by received de-spread data samples to generate an error signal. This removes the data modulation while leaving information about the frequency offset. The complex error signal is then rotated to produce samples of a complex exponential that, if plotted, would be centered about the real axis. This method then forms an estimate of the carrier frequency error by calculating the slope of the resulting line divided by an estimate of the signal amplitude.
In a relatively simpler approach, the frequency estimate of a complex sinusoid x(k) in complex white Gaussian noise is calculated according to equation 1:
where N is the number of symbols and Wk is a weighting function given by equation 2:
This well-known approach was developed by Steven M. Kay and is referred to as “Kay's approach.” In Kay's approach, the frequency is estimated using the weighted average of N-1 differential phase values, which are calculated as the arctangent of the product of the complex signal's conjugate and a time-shifted version of itself. This method has also been shown to achieve the Cramer-Rao lower bound for high SNR levels due to the properties of the weighting function.
Digital carrier frequency error estimation using the DFT approach described above may be too costly computationally for certain applications even if a fast Fourier transform (FFT) is used. Similarly, the PLL approach entails additional hardware and processing complexity that make this method undesirable compared to simpler algorithms. A limitation of the HCDR approach is the appearance of a bias error in the carrier frequency error estimate that increases with the degree of the offset and is independent of the symbol energy to noise energy (Es/No) level. The addition of a compensation factor may reduce the mean estimation error, however, this results in increased complexity along with an increase in the variance of the estimation error. With respect to Kay's approach, direct application to a Quasi-Bandwidth Limited Minimum Shift Keyed (QBL-MSK) modulated waveform illustrates that adequate performance requires a relatively large number of symbols. Accordingly, improved carrier frequency error estimation methods and apparatus are needed that are not subject to these limitations. The present invention addresses this need among others.
The present invention is embodied in methods and apparatus for determining carrier frequency error of a serial offset quadrature pulse shaped signal, such as a minimum shift keyed (MSK) signal. Carrier frequency error is determined by receiving a quadrature pulse shaped signal having a synchronization sequence, detecting synchronization of the quadrature pulse shaped signal, and storing a baseband inphase (I) signal and a baseband quadrature (Q) signal of the synchronization sequence while detecting synchronization. After detecting synchronization, segments of the stored baseband I and Q signals are read and correlated with a spreading sequence. Carrier frequency error is then estimated based on phase differences between each of the correlated segments.
The invention is best understood from the following detailed description when read in connection with the accompanying drawings, with like elements having the same reference numerals. When a plurality of similar elements are present, a single reference numeral may be assigned to the plurality of similar elements with a small letter designation referring to specific elements. When referring to the elements collectively or to a non-specific one or more of the elements, the small letter designation may be dropped. The letter “n” may represent a non-specific number of elements. This emphasizes that according to common practice, the various features of the drawings are not drawn to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
In accordance with one aspect of the invention, an improved digital frequency estimation algorithm is provided that overcomes the complexity of DFT algorithms and the additional overhead associated with PLL approaches by “back processing” the synchronization section of a received waveform. The algorithm allows for a frequency estimate to be formed from a relatively short segment of input data using overlapping symbols extracted from the data. By correlating over short segments, the signal-to-noise ratio is improved for the estimate. Since a synchronization (SYNC) sequence is known by a demodulator in a receiver, the demodulator can store the received digitized inphase (I) and quadrature (Q) baseband signals during the SYNC section of the waveform. Once SYNC is detected, the stored I and Q signals received during the SYNC section are read out of memory and processed to determine the carrier frequency error. The carrier frequency error can be determined entirely in the time-domain. Thus, a Fourier transform is not required, thereby avoiding the associated computational complexity. The carrier frequency error may be passed to the demodulator to provide a carrier frequency correction.
A carrier frequency estimate is formed in accordance with the present invention using a weighted average of differential phase measurements. The differential phase is calculated between overlapping, de-spread symbols extracted from a synchronization section of a waveform. The frequency estimate, fest, is given in Hz by equation 3:
where Toffset is the time offset between successive symbols, N is the number of symbols, wk is a weighting function and Δθk is the phase difference between symbols.
In an exemplary embodiment, the algorithm is applied to serial formatted Quasi-Bandwidth Limited Minimum Shift Keyed (QBL-MSK) modulation, which is a power spectral efficient signal with a near constant radio frequency (RF) envelope modulation. Serial QBL-MSK (SQBL-MSK) enables use of a serial correlation structure, which requires only an inphase (I) correlator and a quadrature (Q) correlator using the same synchronization (SYNC) sequence. Standard parallel QBL-MSK uses a four correlator structure based on the even and odd symbols on the I and Q sequence. Using the serial correlation structure for synchronization (SYNC) detection and short segment correlations for frequency estimation provides a simplified Binary Phase Shift Keying (BPSK) correlation operation versus the parallel structure, which reduces complexity in the SYNC and frequency estimation operation. Although QBL-MSK is selected as the modulation waveform in the exemplary embodiment, other embodiments including constant or near constant envelope modulation like MSK, Gaussian MSK, Offset Quadrature Phase Shift Keying (OQPSK), Raised Cosine (RC)-OQPSK, and other such keying techniques can be used for the modulation.
In an exemplary embodiment, serial formatting is used on the waveforms during modulation to simplify the SYNC and frequency estimation operation. Serial formatting for quadrature pulse-shaped signals may be applied by adding a serial formatting term to the modulation waveform, which multiplies a non-return-to-zero (NRZ) symbol sequence with a repetitive 1, 1, −1, −1 sequence. For SQBL-MSK, the modulation waveform for the SYNC section of the waveform can be is written as shown in equation 4 and 5.
For the SQBL-MSK SYNC waveform equations 4 and 5, Ts represents the SYNC symbol period, ci represents the SYNC symbols at time iTs, 2M is the number of symbols in the SYNC sequence, p(t) is the QBL pulse-shaping function, fo is the carrier center frequency, and the (−1)i terms, which multiply the symbol values, represents the serial formatting. For a 128 symbol SYNC, M is equal to 64 and the SYNC symbols (ci) take on either a +1 or −1 value.
s(t)=x(t)cos(2πfot)+y(t)sin(2πfot). (5.1)
The equations for the I {x(t)} and Q {y(t)} signals modulating the carriers during the SYNC section of the waveform may be obtained directly from equation 4 and are set forth below in equation 6 and equation 7, respectively:
The QBL-MSK coefficients of the symbol matched filters 216 and 218 are based on the QBL-MSK pulse-shaping function shown in equation 8:
where Ts corresponds to the symbol period for the SYNC sequence. Since, in accordance with equation 8, the QBL-MSK pulse-shaping function is non-zero over a four symbol period interval, the digital QBL-MSK symbol matched filters 216 and 218 operating at twice the symbol rate consist of 9 samples defined by equation 9:
Since the filter value is equal to zero for k equal to 0 and 8, the response of the digital QBL-MSK symbol matched filters 216 and 218 can be simplified to 7 samples defined by equation 10:
Convolution of the QBL-MSK symbol pulse shape with the QBL-MSK symbol matched filter results in the QBL-MSK autocorrelation function {g(t)}, which is shown in
Using the QBL-MSK autocorrelation function {g(t)}, the I and Q signals out of the symbol matched filters 216 ad 218 (based on equation 6 and 7) are as show in equations 11 and 12, respectively:
where Δf is the carrier frequency error and φ is the carrier phase change. The carrier frequency error between the transmitter 100 and the receiver 200 is the term being estimated by the carrier frequency estimation operation. The I and Q symbol matched filter outputs are sent to the SYNC and carrier frequency estimation operation for further processing, which is described below.
In an exemplary embodiment, the phase rotator 400 implements a standard phase rotator algorithm.
In an alternative exemplary embodiment, the phase rotator 400 implements a simplified phase rotator algorithm.
As shown in
In an exemplary embodiment, the symbol sliding correlators 700 and 702 for the input I and Q signals are substantially identical and, thus their operation will be described with reference to the symbol sliding correlator 700 for the I signal only. The symbol sliding correlator 700 includes a sliding length of 128 symbols, represented by delay elements 704, 706, 708, 710, and 712 in
As shown in
Typically, the correlation output is selected by switch 734 and may easily be implemented using the approximation of equation 13:
where Max{ } is the maximum value of its two arguments, Min{ } is the minimum value of its two arguments, and Mag[ ] is the magnitude of its argument.
The signal used as an input signal to peak detection module 736, for each of the two different correlation outputs is shown in
Since the correlation response is different depending on the input signal, the time error estimation is also dependent on which input signal is used. By comparing the amplitude of three adjacent samples, peak detection module 736 determines if a peak has occurred at the center sample. If the center sample is declared to be a peak, the magnitude of that sample (peak sample) is compared to the SYNC threshold by SYNC detection comparison module 738. If the magnitude of the peak sample is greater than the SYNC threshold, the SYNC detection comparison module 738 declares SYNC and sends a signal to sample timing selection module 750.
SYNC determines the time location of the first sample and whether even or odd samples are processed in the carrier frequency estimation process. If the SYNC process is operated at twice the symbol rate, a SYNC point within ±0.25·Ts is determined directly by the peak detection. For the SYNC process operating at the symbol rate, the SYNC detection point along with the correlation profile is used to establish the SYNC point within a resolution of ±0.25·Ts, as described below.
Using the correlation output based on the QBL-MSK autocorrelation response of
During SYNC detection, a correlation profile based on peak correlation levels are determined about the SYNC point established by correlation memory module 740. The time interval over which this profile is generated is referred to as the multi-path window. Based on the peak magnitude level of the correlation profile, multi-path RAKE taps are selected with symbol timing and timing error estimation for the phase correction module for each tap. An estimate timing error module 742 provides timing error estimates.
Circular buffers allows I and Q memories 404a and 404b to be loaded until SYNC is detected. By knowing the address at which the circular buffer loads the last I & Q SYNC symbol into the I & Q memories 404a and 404b by the occurrence SYNC detection, the address count can be set to the first I & Q SYNC symbol loaded into the I & Q memories 404a and 404b.
The example condition without wrap around in the circular buffer shows SYNC occurring at either memory address location 285, 286, or 287 dependent on the symbol timing error. Letting Ns represent the memory address location of SYNC, the first SYNC symbol is located at Ns-254. The SYNC symbols read out of the circular buffers of memories 404a and 404b for correlation with the SYNC sequence start at memory address Ns-254 with the memory address increased in increments of 2 to obtain the 128 samples for processing. For this memory condition example and defining 286 as the on-time SYNC point for ideal timing, the memory is read out as follows:
For all three possible SYNC points, 128 samples are read out of the circular buffers of the memories 404a and 404b.
The second example given in
For all three possible SYNC points, 128 samples are read out of the circular buffers of the memories 404a and 404b.
The serial I and Q signals read out of the circular buffer based on SYNC detection are given by the following equation:
where ΔTs is the timing error (±Ts/4 maximum) not removed by the SYNC timing correction and 0 represents one of the four possible timing conditions the phase rotator 400 (
The phase error introduced by the down-conversion operation (φ) and the phase error introduced by the phase rotator 400 (θ) can be combined into a total carrier phase error term (θc). From these equations, two key features of serial demodulation can be seen. First, the serial formatting factor (−1)i seen in the modulation equation 4 is removed. Secondly, it can be seen that the I and Q baseband signals consist of the filtered SYNC sequence multiplied by either a cosine or sine weighting function. From
where δ(n) is the unit impulse function, which is equal to 1 for n equal to zero and equal to 0 for all other values of n. The serial I and Q signals can be rewritten as shown in equations 21 and 22:
Equations 21 and 22 illustrate that the serial I and Q signals consist of the desired SYNC sequence multiplied by the sinusoidal carrier frequency error term and the undesired cross-correlation properties of the SYNC sequence. For SYNC sequences with low cross-correlation property over the correlation segments, these cross-correlation terms are negligible. Removing these terms from the serial I and Q signals results in equations 24 and 25:
Referring back to
where m is the correlation output sample that goes from 0 to 28, which provides 29 I and Q correlation samples. Equations 26 and 27 illustrate that the carrier frequency error affects the amplitude of the cosine and sine terms. These amplitude terms are determined by the carrier frequency error, the number of correlation samples, and the symbol period. In an exemplary embodiment, the maximum carrier frequency for this approach is set by equation 28.
where M is the number of correlation samples, which is equal to 16 for the example. This relationship minimizes the reduction in the amplitude to less than 3 dB. If the carrier frequency is larger than the maximum carrier frequency determined by this equation, the number of correlation samples can be reduced to 8. Since the amplitude and phase values on both the I and Q signals are equal, the carrier information can be estimated from the correlation samples. The 29 I and Q correlation samples from the respective correlators 408a and 408b (
θe(4m)=−2π[4m]ΔfTs+π15ΔfTs+θc,form=0,1, . . . 28 (29)
where the phase estimate is negative, since the sine term is negative. The differential phase estimation used to estimate the carrier frequency is shown by equation 30.
In an exemplary embodiment, a one sample delay 1202 is used to introduce a delay to the phase output signal. The phase output signal and the delayed phase output signal are processed by a phase difference calculator 1204 to generated 28 phase difference samples (e.g., by calculating the phase difference between each sample and the next sample, see
where 4Ts removes the time interval for the phase calculation, 2π removes the radian term, and A is the required scaling for the phase correction process. Inserting the differential phase estimation from equation 30 into the carrier frequency estimation equation 32 produces equation 33.
For A equal to 1 in equation 33, the carrier frequency error estimation is obtained. Since this term is the negative value of the carrier frequency error, it may be used to correct the carrier frequency.
The present invention may be used for fast carrier frequency estimation using the known synchronization (SYNC) pattern for a serial formatted QBL-MSK modulation signal. Serial formatting of the modulation waveform is selected to reduce the SYNC and frequency estimation correlation complexity. This fast carrier frequency estimation approach can be applied to standard demodulator architecture, which uses four correlators by changing the correlation structure. Besides QBL-MSK, the carrier frequency estimation approach can be applied to other quadrature modulation waveforms like Offset Quadrature Phase Shift Keying (OQPSK), Minimum Shift Keying (MSK), Gaussian MSK, Tamed Frequency Modulation (TFM), Intersymbol Jitter Free Offset Quadrature Phase Shift Keying (IJF-OQPSK), Raised Cosine Filtered Offset Quadrature Phase Shift Keying (RC-OQPSK), and bandwidth efficient Continuous Phase Modulation (CPM) schemes, for example. To simplify the SYNC and frequency estimation correlators, serial formatting of these waveforms is recommended. Also this carrier frequency estimation can be applied to Binary Phase Shift Keying (BPSK) or filtered BPSK, where serial formatting is not required to provide the reduced SYNC and frequency estimation correlation structure.
For other similar and non-similar disclosures, please refer to the following five applications filed on the same day as this application. These five applications are TBD (and, respectively, correspond to the following five provisional applications 60/703,316; 60/703,179; 60/703,373; 60/703,320 and 60/703,095). These applications are all incorporated herein by reference in their entireties.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/703,180, filed Jul. 28, 2005.
This invention was made with Government Support Under Agreement No. DAAB07-03-9-K601 awarded by the United States Army. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60703180 | Jul 2005 | US |