This relates to tuning variable filters, and in particular, tuning from an initial frequency to a desired frequency.
Tunable RF filters are useful in various applications, such as in signal conditioning and communications systems. Some examples of tunable band pass filters are described in U.S. Pat. No. 10,050,604 (Nielsen et al.) entitled “Variable Filter”.
To improve system efficiencies and security, it is desirable to minimize the time it takes to switch to another frequency. Examples of filters that attempt to improve switching speed include U.S. Pat. No. 9,711,833 (Shapoury et al.) entitled “Tunable RF anti-jamming system (TRAJS)”, and U.S. Pat. No. 6,909,344 (Toncich) entitled “Band Switchable Filter”.
According to an aspect, there is provided a method of switching a resonant frequency of a variable filter from an initial frequency to a desired frequency, the variable filter comprising an active feedback bandpass filter having a tunable frequency and a variable Q, the method comprising the steps of: with the variable filter operating at the initial frequency and an initial Q, Q-spoiling the variable filter toward a low-Q state, and tuning the variable filter toward the desired frequency and Q-enhancing the tunable resonator from the low-Q state to achieve a desired filter response.
According to other aspects, the method may comprise one or more of the following features, alone or in combination: the variable filter may comprise a signal loop connected between a signal input and a signal output, the signal loop comprising at least a tunable resonator and a variable gain block; Q-spoiling the variable filter may comprise reducing a gain factor of the gain block; variable filter may be tuned toward the desired frequency as the variable filter is Q-enhanced from the low-Q state; the method may further comprise the steps of Q-enhancing the variable filter to cause the variable filter to operate in an oscillation state, and then decreasing the Q to achieve the desired filter response; and the tunable resonator may be Q-spoiled sufficiently to permit the variable filter to switch from the initial frequency to the desired frequency within a time period of less than 100 nanoseconds or less.
According to an aspect, there is provided a method of switching a resonant frequency of a variable filter from an initial frequency to a desired frequency, the variable filter comprising an active feedback bandpass filter having a tunable frequency and a variable Q, wherein in operation, the variable frequency is described by one or more poles in an s-plane plot having a real axis and a jω axis, the method comprising the steps of: with the variable filter operating at an initial pole location in the s-plane plot, Q-spoiling the variable filter to cause one or more poles to move away from the jω axis and toward a low-Q state, and tuning the tunable frequency and controlling the variable Q to achieve a desired pole location corresponding to the desired frequency and a desired Q.
According to other aspects, the method may comprise one or more of the following features, alone or in combination: achieving the desired pole location may comprise Q-enhancing the variable filter relative to the low-Q state; the tunable frequency may be tuned toward the desired frequency while the variable filter is Q-enhanced from the low-Q state; the variable filter may comprise a signal loop connected between a signal input and a signal output, the signal loop comprising at least a tunable resonator and a variable gain block, and wherein Q-spoiling the variable filter may comprise reducing a gain factor of the variable gain block; the desired pole location may be achieved by increasing the gain factor of the gain block to cause the tunable resonator to operate in an oscillation state, and then decreasing the gain factor to a resonant state of the tunable resonator; and the low-Q state may be selected to permit the variable filter to switch from the initial frequency to the desired frequency within a time period of less than 100 nanoseconds.
According to an aspect, there is provided a variable filter, comprising an active feedback bandpass filter comprising a signal loop connected between a signal input and a signal output, the signal loop comprising at least a tunable resonator and a variable gain block, the signal loop generating a filter response, and a controller connected to tune a frequency of the tunable resonator and vary a gain factor of variable gain block, the controller being programmed to tune the filter response of the signal loop from an initial frequency to a desired frequency by: Q-spoiling the tunable resonator toward a low-Q state, and from the low-Q state, tuning the tunable resonator toward the second resonant frequency and Q-enhancing the tunable resonator state to achieve a desired Q at the second resonant frequency.
According to other aspects, the method may comprise one or more of the following features, alone or in combination: Q-spoiling the tunable resonator may comprise reducing a gain factor of the gain block; the controller may be programmed to tune the tunable resonator toward the desired frequency while Q-enhancing the tunable resonator from the low-Q state; the controller may be programmed to Q-enhance the tunable resonator from the low-Q state to cause the tunable resonator to operate in an oscillation state, and then decrease the gain factor to achieve the desired Q at the second resonant frequency; and the low-Q state may be sufficient to permit the signal loop to switch from the initial frequency to the desired frequency within a time period of less than 100 nanoseconds or less.
In other aspects, the features described above may be combined together in any reasonable combination as will be recognized by those skilled in the art.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
A variable filter, generally identified by reference numeral 10, will now be described with reference to
The variable filter and method described herein may be used to reduce the switching speed from one resonant bandpass response at a first frequency to another resonant bandpass response at a second frequency.
An example of a suitable variable filter design may include a tunable bandpass filter implemented with tunable LC tank circuits with variable active feedback across the tank, although other tunable resonators may also be used. U.S. Pat. No. 10,050,604 (Nielsen et al.) entitled “Variable Filter”, incorporated herein by reference, includes various circuit designs that may be useful in implementing a variable filter. For example, higher order and more complex filter circuits may be designed by including additional resonators, and selective design of circuit loops, or feedback paths, with variable gain elements.
These filter circuits may be described as active feedback bandpass filter (AFF), in which the resonant signal is recirculated back into the resonator with gain in the signal loop as shown in
Referring to
Higher order filters that use multiple filters, or combinations of the variable resonator shown in
Examples of variable filters may include active multi-resonator feedback bandpass filters (MRF), which may include combinations of the core resonator module shown in
The concepts described herein regarding the generalized active feedback bandpass filter (AFF) implementation may apply to both bidirectional and unidirectional signal flow. However, only examples of the unidirectional version will be discussed herein, such as the generalized resonator shown in
As the Q enhancement becomes more aggressive, the feedback places the closed loop resonant pole ever closer to the complex plane jω axis in the left-hand s-plane as depicted in
Transfer Function Analysis
The closed loop variable filter of
The Hr(s) block may be adjustable to generate a variable frequency response, such as a resonator with a variable tuning element. The scaling block gain G may also be adjustable. In one example, the circuit may be an AFF that is Q-enhanced with active feedback to realize a more narrow band filter response centered at the desired frequency, fd.
Hr(s) contains the components of the circuit that are frequency dependent. Hence, in addition to including the frequency dependence of the resonators, Hr(s) may also include phase shifts due to the excess loop delay (excess implying that they are not related to the resonator phase shift due to propagation delays), and any frequency dependence of the active components, such as the gain block.
For convenience, a normalization is assumed such that specifically at fd, |Hr(s)|=1 and |G|<1 for a stable filter response. Also, specifically at fd, with |G|=1 the AFF will be marginally stable, and for |G|>1 it will be unstable. The mathematics are a bit simpler if the transfer functions of the variable filter are reorganized as shown in
G is approximated as being frequency independent as indicated by the absence of dependence on s. Hence G really implies the net gain applied to the loop which includes the losses in the loop. Initially G will be approximated as being independent of the signal passing through it.
The single resonator module of
The term D in the denominator contains the impact of the scaling block feedback gain. The ‘Q control’ in
Q-enhancement is equivalent to decreasing D, thus moving the resonant pole in
The scaling block shown in
The closed loop response which provides the actual filter frequency response may be represented as:
It can be shown that the closed loop transfer function for both variable filter circuits
(1−GHr(s))
This shows that the poles of each circuit are at the same location in the S plane. The numerators of the transfer function differ only by the magnitude of the scaling factor G.
Referring to
where the Nyquist stability contour is
which represents the boundary between the stable and unstable regions in the complex plane.
An open loop Nyquist plot of Hr(s) is shown in
and the device line is the positive real axis such that Q enhancement occurs for G<1 but the AFF is unstable for G>1.
Generally speaking, the AFF may be stable for high Q enhancement when G becomes close to 1. This is a result of the magnitude of the Nyquist contour shown in
Implementation of Fast Resonant Frequency Switching
In general, a highly selective filter involves pole Q's that are very high. Hence it may take many RF cycles to build up the signal as the variable filter is changed to a new pole position, as represented by
An important issue with the analysis of this pole change is to assure that frequency and time domain analysis are not confused. A time domain analysis may be adopted as the pole of a resonator is only meaningful when the pole is static. This can be modified by assuming a quasi-static pole of quality factor Q that is slowly transitioning from one state to another state relative to the signal frequency. The term “slowly transitioning”, means that the time constant associated with the pole change is much longer than 1/(Qfc) of the pole. If the Q is several thousand and the frequency is, say, 1 GHz, then this time constant is on the order of microseconds.
Hence, a fast-moving pole cannot be meaningfully described as the transition neatly outlined in
Increased Switching Speed
As discussed above, the resonant energy makes it difficult to tune a variable filter from a first frequency to a second frequency. By Q spoiling the variable filter to reduce the resonant energy prior to tuning the variable filter, the switching time may be reduced.
Referring to
In another example, referring to
Referring now to
In each phase, the amount and rate at which the gain and/or frequency are adjusted may be varied to optimize the switching speed.
The primary objective of Phase 3 is to achieve a critical damping type response in reaching the desired final pole position ω2 with the desired Q. Critical damping, for reference, is presented notionally in
By using the method outlined in this disclosure, switching and settling times on the order of 100 nanosecond or less. In other examples, the switching time may be 50 nanoseconds or less. This may depend at least in part on the initial and final frequency and Q of the variable filter, hardware constraints, etc.
To make the AFF able to quickly change the selection of the signal instance it may be beneficial to have the filter resonators switch state very quickly. With conventional tunable resonators this may be a problem as the Q is generally fixed and to change state there would be a blending or overlap of the old and new signal instance. However, as the AFF described herein is comprised of variable filter components that use Q enhancement, it is possible to drive the Q-enhanced pole further into the left-hand plane, thereby quickly quenching the old signal instance. Then the frequency of the new desired signal instance may be tuned, and then the signal may be allowed to build up quickly, which may involve driving the pole to the right of the final state, closer to the jω axis, to accelerate the build-up of energy in the resonator, after which the circuit may be adjusted to return to the desired Q-enhanced state for the balance of the dwell time of the new signal instance.
Timing Considerations
Referring to
Where the resonator includes a varactor diode, the bias determines the capacitance and therefore the resonant frequency. As such, the bias of the device as in the first factor may be completed in about 10 nsec. It may be faster, but the varactor bias network may begin to load the resonator dropping the Q. Hence a typical fast bias change would be on the order of 10 nsec.
With respect to the second factor, the decay of energy at ω1 is on the order of Q RF cycles, where Q is the enhanced Q of the pole. As an example, if this Q is 1000 and the frequency of ω1 corresponds to 1 GHz, then the time to deplete the energy stored will be about 1 microsecond. Likewise, the energy must be built up at the new frequency of ω2. If Q is the same, as it is in
However, the decay of energy at ω1 and the buildup of energy at ω2 are processes that occur at the same time. Hence Q RF cycles at the new frequency of ω2 is a reasonable approximation.
From another perspective, what actually happens is that the signal energy at ω1 is transformed into energy at ω2 as the varactor diode bias is changed. However, the phase of the signal at ω1 that gets transformed into the frequency of ω2 is independent of the phase of the input signal into the filter at ω2. In any event, the transient relates to the level of the signal at ω2 as it asymptotically reaches the amplitude level and phase corresponding to this input signal. This transient takes about Q periods of ω2 to complete.
Instead of the direct trajectory as in
The bias of the filter loop gain and resonator frequency may be approximated as being arbitrarily fast in comparison to the time required for the energy corresponding to ω1 to decay and the new energy corresponding to the signal at ω2 to build up. It may also be assumed that the signal at ω2 is applied as soon as the filter transition from ω1 to ω2 is initiated. As such, the switching time relates primarily to the time required for the filter to settle at the ω2 state corresponding to the new applied input at ω2. The ω1 signal decays very quickly as the bias pushes the pole into the left-hand plane. At this point (i.e. after phase 1 in
It may be detrimental to linger in the right-hand plane before completing the frequency transition trajectory at the desired final pole position because 1) the amplitude of the ω2 signal will be too high, and 2) the phase of the ω2 signal may off by up to 180 degrees. With this, the switching time will require about Q periods of additional transient before settling at the response at ω2 corresponding to the applied input.
Hence the timing of the frequency transition trajectory is important. With an appropriate trajectory, the time required for the final ω2 transition may be a fraction of the Q periods at ω2 that would otherwise be required.
In another example, an initial narrowband signal may be centered around col, and then at t=0, switched to a new signal centered around ω2. At or around t=0, Q spoiling starts such that the energy of the first signal residing in the resonator begins to decay. Meanwhile, the second signal starts to build up as the resonator pole is moved toward the second frequency. Once the first signal has sufficiently decayed, the second signal is then Q enhanced to cause it to build up more quickly, as discussed above. Any residual component at ω1 is mapped into ω2, but as there is no new signal input at col, no new energy added. The greater the amount of residual energy of the first signal that is mapped into ω2, the longer it takes to decay, as the pole at ω2 now has a high Q. As such, it is beneficial to select the trajectory of the pole such that the signal energy at ω1 is sufficiently dissipated before the ω2 pole is Q-enhanced to improve the switching speed.
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements.
The scope of the following claims should not be limited by the preferred embodiments set forth in the examples above and in the drawings but should be given the broadest interpretation consistent with the description as a whole.
Number | Date | Country | |
---|---|---|---|
62895430 | Sep 2019 | US |