Not applicable.
Not applicable.
As shown in
In recent years, there has been a transition to alternative fire alarm communication devices due to the discontinuation of traditional copper telephone lines 110 and 120. The alternative fire alarm communication devices 160 may include cellular radio and/or IP or other methods of communication that are used to transmit alarm events to the central station. In many cases, the alternative fire alarm communication device 160 will connect to the telephone jacks of the FACP 100, in effect, replacing the outdated telephone lines 110 and 120.
However, when retrofitting an existing telephone line based FACP 100 with a non-telephone-based fire alarm communicator 160, traditional telephone lines 110 or 120 are inactivated. The inactivation creates a situation where the FACP will receive phantom inoperable communication line signals thereby putting the FACP in a constant state of system trouble and rendering the system useless. To resolve this problem, prior art fire alarm communicator 160 developed a work-around by being designed to always provide FACP 100 with a constant voltage emulating an operational telephone line. However, providing a constant voltage to the FACP over lines 110 and 120 renders the lines inoperable as potential supervisory lines for the fire alarm communicator itself to communicate trouble events to the FACP.
As shown in
As an example, when fire alarm communicator 160 is a radio, upon detection of radio trouble, the radio will bring the supervisory trigger output 165 low, causing a fault on FACP providers to rezone input 170. This will cause FACP 100 to locally annunciate the trouble, alerting occupants of the fire system trouble.
Establishing this supervision method requiring an extra line on an existing FACP presents several challenges to the fire alarm service personnel, including the following:
The above requirements present challenges to the fire alarm service personnel tasked with connecting the alternative fire alarm communication device to the FACP.
In one embodiment, the present invention provides a system and method of FACP supervision of an alternative fire alarm communication device that does not require the physical connection of a supervisory point to a FACP and does not require any special programming of the fire alarm control panel.
In another embodiment, the present invention provides a system and method that allows an alternative fire alarm communication device to be connected to a FACP to indicate an alternative fire alarm communication device system trouble to the FACP through manipulation of the telephone line voltage emulation. This manipulation of the telephone line voltage emulation will cause a communication-related system trouble to annunciate at the annunciator or keypad of the fire alarm system, which is typically installed in the lobby or entryway of the building, alerting occupants of the system trouble.
In another embodiment, the present invention provides a system and method that allow for the manipulation of the voltage of one of the two emulated telephone lines to communicate detected system trouble to the FACP, while keeping the second of the two telephone lines to be available for emergency communication.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
In the drawings, which are not necessarily drawn to scale, like numerals may describe substantially similar components throughout the several views. Like numerals having different letter suffixes may represent different instances of substantially similar components. The drawings illustrate generally, by way of example, but not by way of limitation, a detailed description of certain embodiments discussed in the present document.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed method, structure or system. Further, the terms and phrases used herein are not intended to be limiting, but rather to provide an understandable description of the invention.
In a preferred embodiment, as shown in
Fire alarm communicator 200 includes two output lines 210 and 220. As with prior art systems, output lines 210 and 220 are configured to provide a constant output that is recognized by FACP 230 as a signal or voltage that is indicative of an operational telephone line which usually has a voltage below 48 volts DC or a range below 48 volts DC. However, unlike prior art fire alarm communicators, no separate supervisory line is established between fire alarm communicator 200 and FACP 230, thereby, doing away with one or both of lines 150A and 150B.
Instead, the embodiments of the present invention turn the perceived disadvantage of supplying the FACP with a constant voltage to avoid triggering a system trouble event based on a perceived inoperable telephone line at the FACP into an advantage. The present invention is configured to annunciate a trouble condition of fire alarm communicator 200 by removing or manipulating the constant output found on lines 210 and 220, rather than keeping it at a constant output as the prior systems are designed to do. This manipulation of the voltage will cause a communication-related system trouble to annunciate at the annunciator or keypad of FACP which is typically installed in the lobby or entryway of the building, alerting trouble or disturbance of the system to occupants of the system. In essence, the embodiments of the present invention are configured to have a fire alarm communicator 200 system trouble condition simulate an operational failure of a traditional telephone line thereby causing FACP 230 to go into an alarm state. This voltage manipulation allows for supervisory events concerning fire alarm communicator 200 to be communicated through pre-existing telephone line inputs at the FACP eliminating the need for additional communication lines.
Persons of skill in the art would recognize that the voltage of outputs 340 and 350 may be manipulated in a number of ways such as by opening switch 325 or opening switches 325 and 330. Alternately, only switch 330 may be opened. Also, microprocessor 310 and voltage control circuit 320 may be configured to lower the voltage or cease supplying power to one or both of the outputs without the use of switches. Although more expensive, separate voltage emulation circuits can be used for outputs 340 and 350.
In another embodiment of the present invention, outputs 340 and 350 are independently connected to the Telco Voltage Emulation Circuit 320, and switches 325 and 350 respectively connect to outputs 340 and 350.
Common supervisory events that will cause a FACP system trouble annunciation include radio trouble conditions such as (1) Communicator Fail to Check-In (communicator failed to check-in in the prescribed time period, i.e.: every 5 minutes), (2) Cellular Network Trouble (communicator is unable to establish contact with the cellular tower), (3) Communicate Failure (the communicator was unable to successfully report to the central station), (4) Communicator Low Voltage (the communicator voltage is low, i.e.: brownout), and (5) Communicator Low Battery (the communicator battery is low). In other embodiments of the present invention, each supervisory event may have its own predetermined signal.
In another embodiment, the present invention replaces the above supervisory standard for a fire alarm communicator requiring a separate line of communication with the FACP with a method that forces the radio to remove the telephone line voltage from the fire panel telco jack. This forces the fire panel to annunciate the trouble due to a perceived loss of an operable telephone line, a trouble event that all FACPs communicate with a central station over telephone lines are capable of doing regardless of make and model.
The present invention by using the existing FACP capabilities to sense an inoperable telephone line has many advantages over the prior art including (1) eliminating the need to establish a separate wire run from the radio to the fire panel; (2) having the ability to be used in cases where the FACP does not support zone expansion or where it is not possible to properly supervise the communication device; (3) eliminating the need to install additional hardware to accept the supervision connection even if the fire alarm control panel supports zone expansion; (4) eliminating the need for the FACP to be reprogrammed to support and properly annunciate the required supervision events; and (5) eliminates the need for fire alarm service personnel to be proficient in the programming of a particular brand of FACP.
While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The disclosure should therefore not be limited by the above-described embodiments, methods, and examples, but by all embodiments and methods within the scope and spirit of the disclosure.
This application is a continuation of U.S. Ser. No. 16/370,867 filed on Mar. 29, 2019, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4465904 | Gottsegen | Aug 1984 | A |
5950150 | Lloyd | Sep 1999 | A |
6078050 | Castleman | Jun 2000 | A |
9875644 | Chiarizio | Jan 2018 | B2 |
Number | Date | Country | |
---|---|---|---|
20210217297 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16370867 | Mar 2019 | US |
Child | 17216202 | US |