The disclosed embodiments relate generally to wireless network communications, and, more particularly, to fast link adaptation and transmit power control in wireless communications systems.
Many applications demand efficient and low-cost approaches for large-scale information collection and distribution. For example, reading electrical/gas meters takes a lot of human resources, and collecting data from large-scale sensors via wires is very expensive. Wireless networks provide convenient and low-cost solutions for large-scale information collection and distribution. Wireless Smart Metering Utility Network based on IEEE 802.15.4g that operates in any of the regionally available license exempt frequency bands is one of wireless efforts to enable large-scale information collecting from smart meters. The IEEE 802.11ah task group also focuses on developing next generation wireless local network standard to meet the requirements of large-scale information collecting and distributing.
Link adaptation can adapt modulation and coding scheme (MCS) according to time-varying channel conditions to increase throughput of a system. Link adaptation can be supported via a request and feedback process. For example, the transmitting device sends an MCS request and the receiving device sends an MCS feedback. Since different receiving device implementations can have different receiver sensitivity levels, the receiving device typically can make more accurate decision regarding the appropriate MCS to be used based on the channel conditions. However, the process of request and feedback for link adaptation requires extra hand shaking. It introduces significant overhead and power consumption.
One important feature of wireless meter/sensor networks is that the data traffic is in very low duty cycle and in very small packet size. For example, data from meters or sensors may be collected in every few minutes, hours or days. In addition, most transmissions from meters or sensors to AP may be just a single packet transmission. For communications with such low duty cycles and small packet size, it is important to reduce overhead caused by hand-shaking protocols or slowly converged protocols to improve efficiency and to save power. Another important feature of wireless meter/sensor networks is that the wireless meter/sensor devices are generally battery powered and those batteries needs to sustain the devices for multiple years of life. Efficient power control scheme is thus very important. First, power control can save a lot of transmit power (also total power consumption). Second, power control also helps reduce the interference to other overlapping BSSs. In large BSS, interference among overlapping BSSs is a major issue that limits the network throughput and efficiency. Based on the above observation, a fast link adaptation and efficient transmit power control scheme is highly desired.
An open-loop fast link adaptation scheme is proposed in an OFDM system. An access point (AP) first transmits a downlink packet comprising an open-loop link metric to a wireless station. The open-loop link metric contains a transmit power of the downlink packet plus a receiver sensitivity of the access point. The wireless station measures a received signal strength indication (RSSI) value of the downlink packet. The wireless station then applies open-loop link adaptation and determines a modulation and coding scheme (MCS) based on the open-loop link metric and the RSSI value. The wireless station then transmits an uplink packet using the determined MCS. The open-loop link adaptation scheme is especially suitable for smart meter/sensor networks as it reduces overhead and increases link capacity.
In one embodiment, the open-loop link adaptation is followed by a close-loop link adaptation and transmit power control scheme. After the AP successfully receives the first uplink transmission, it inserts a close-loop link metric (CLM) into the ACK or another polling packet in the next downlink packet. The CLM is defined by the received signal strength of the uplink packet minus the receiver sensitivity of the AP. Based on the CLM, the wireless station applies close-loop link adaptation for the subsequent uplink transmission.
The OLM and CLM may be a part of PHY header, MAC header, or a specific field. In one example, an information element contains a one-byte element ID, followed by a one-byte OLM. In another example, an information element contains a one-byte element ID, followed by a one-byte link metric, which in turn contains a one-bit type field and a seven-bit OLM or CLM field. The one-bit type field indicates whether the link metric field is OLM or CLM.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Link adaptation is a mechanism commonly used in wireless communication systems. Under link adaptation, the modulation, coding, and other signal and protocol parameters are matched to the time-varying conditions of the underlying radio link. In Enhanced Data rates for GSM Evolution (EDGE), a rate adaptation algorithm is used to adapt the modulation and coding scheme (MCS) according to the quality of the radio channel. For example, in the case of good channel condition, a larger modulation scheme or higher code rate is used by the transmitter to increase the data rate. On the other hand, in the case of poor channel condition, a smaller modulation scheme or lower code rate is used by the transmitter to decrease the data rate. Adaptive modulation invariably requires some channel knowledge at the transmitter. Adaptive modulation systems improve rate of transmission, and/or bit error rates, by exploiting the channel station information (CSI) at the transmitter. Especially over fading channels that model wireless propagation environments, systems with link adaptation exhibit great performance enhancements as compared to systems that do not exploit channel knowledge at the transmitter.
In large Basic Service Set (BSS) of wireless networks, some stations are close to the AP and some stations are far away from the AP. The pathloss of different stations varies significantly. As a result, the channel condition for each different radio link also varies significantly. In the example of
In order for the transmitter to exploit the channel knowledge for link adaptation, one technique is to measure the CSI directly at the receiver, and then feedback the CSI to the transmitter. For example, in a close-loop link adaptation scheme, a wireless station first sends a request to the AP, and the AP sends the transmit power and link margin back to the station. Based on the feedback, the station is then able to obtain the channel condition and apply link adaptation. Such close-loop method, however, requires hand shaking between the AP and the station thus incurs long channel-taken time. In addition, such close-loop method needs to be performed between each station and the AP. For smart meter/sensor networks, there are hundreds or thousands of devices, typically battery powered, for large-scale information collection and distribution. In addition, the data traffic is in very low duty cycle and in very small packet size. Therefore, it is especially important to save power and to reduce overhead caused by the hand shaking in such close-loop link adaptation scheme.
In one novel aspect, an open-loop fast link adaptation scheme is proposed to improve efficiency and to save power. As illustrated in
OLM=PTX
where
In step 321, station 302 receives the downlink packet and applies link adaptation. Station 302 first obtains the OLM from the downlink packet, and then applies link adaptation according to equation (2):
where
From equation (2), station 302 is able to determine AMCS based on the transmit power, the OLM received from the AP, and the RSSI measured by the station. Typically, if the lowest MCS level (e.g., MSC0) corresponds to a minimum received power at the AP, then the next higher MCS level (e.g., MCS1) requires more received power (e.g., 3 dB more) for proper decoding by the AP. For example, if ΔMCS=9 dB, then station 302 may choose a MCS (e.g., MCS3) that requires 9 dB more than the lowest MCS (e.g., MSC0) for proper decoding by the AP. Once station 302 determines the right MCS, it sends an uplink transmission in step 322 using the determined MCS.
Similarly, in step 323, station 303 applies link adaptation and determines the right MCS for uplink transmission in step 324. The same link adaptation scheme is repeated for all other stations including station 304 (e.g., in step 325 and 326). It can be seen that, by using open-loop link adaptation, the multiple stations are able to determine the right MCS for uplink transmission without any preceding request for channel conditions. For example, AP301 simply broadcasts its receiver sensitivity via a periodic beacon or polling packet at different time, and each station is able to select the right MCS for subsequent uplink transmission.
It should be noted that, in order to apply link adaptation with accuracy, it is important for the station to know the actual receiver sensitivity of the AP before each uplink transmission. This is because the receiver sensitivity varies over time due to several factors. First, APs made from different AP vendors have different receiver sensitivities because of different implementations and algorithms. Second, different receiver capabilities such as number of antennas, whether MRC is applied or not also affect the receiver sensitivity value. For example, AP with four antennas can have 6 dB better receiver sensitivity than AP with single antenna. Third, long-term small interferences due to wide area BSS may also affect the receiver sensitivity value. With the knowledge of the actual receiver sensitivity, each station will be able to select the right MCS and ensure successful reception by the AP for each uplink packet.
CLM=RSSIAP−RSENSITIVITY
where
Upon receiving the downlink packet, the wireless station obtains CLM from the downlink packet. Based on the obtained CLM, the station applies link adaptation according the following equation (4):
where
After determining the MCS using Equation (4), the station sends uplink frame 604 using the determined MCS. Based on Equation (4), the station may also adjust the transmit power accordingly. For example, if ΔMCS=PTX
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application No. 61/452,056, entitled “Methods of Fast Link Adaptation and Transmit Power Control in Wireless Smart Metering/Sensor Networks,” filed on Mar. 11, 2011, the subject matter of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61452056 | Mar 2011 | US |