The present invention relates generally to medical fluid-delivery devices, and more specifically to calibration testing of medical fluid-delivery pumps.
Pumps are often used in the medical industry for delivering fluids, e.g., drugs, or diagnostic fluids, to subjects. It is important that medical pumps be calibrated properly so as to ensure that subjects receiving fluid from such pumps are receiving the correct dosages at the correct flow rates, and that safety features of a pump, such as for example, occlusion detection, are properly working. Thus, medical pumps being used in the field, e.g., in a hospital setting, doctor's office, medical treatment center, or a subject's home, typically undergo periodic calibration testing in order to check for pumps that may need to be recalibrated and/or fixed prior to being put back into use. Typically, such calibration testing is done at an off-site lab by a technician.
U.S. Pat. No. 9,726,167 to Schweitzer describes an infusion pump which may include a native pumping mechanism to drive fluids through a functionally associated conduit, at least one native sensor to sense a physical characteristic of the fluid within the conduit, and computing circuitry having a decalibration test mode to determine whether the infusion pump is decalibrated. The computing circuitry may be adapted to receive output from at least one native sensor during the decalibration test mode. Other embodiments are also described.
Apparatus and methods are provided for periodically testing a pump, e.g., a medical pump, in order to determine (a) a parameter of the pump, e.g., a level of pumping accuracy of the pump, or the volume of liquid pumped per pumping cycle of the pump, and/or (b) a level of accuracy of a sensor of the pump, e.g., a force sensor of the pump, and/or a bubble detector of the pump.
In accordance with some applications of the present invention, a method is provided for determining a parameter of a pump based on using the pump to pump a predetermined, known, volume of liquid while the pump simultaneously measures the volume of liquid being pumped. The measured volume of liquid pumped may then be compared to the known volume of liquid pumped in order to determine a parameter of the pump, e.g., in order to assess the pumping accuracy of the pump, e.g., whether the pump is pumping the correct volume of fluid per pumping cycle. After placing liquid into a tube set that is coupled to a pump, an air bubble is injected into the tube such that there is a predetermined, known, volume of liquid between the air bubble and the pump. The pump is then activated so as to advance the air bubble to the bubble detector of the pump. While the pump is pumping, the pump automatically measures the volume of liquid that is being pumped, such that when a downstream edge of the bubble is detected by the bubble detector, the entirety of the predetermined volume of fluid has been pumped and the known volume of liquid pumped may be compared with the volume of liquid as measured by the pump in order to determine a parameter of the pump, e.g., a level of pumping accuracy of the pump.
In accordance with some applications of the present invention, a method is provided for determining a level of accuracy of a sensor, e.g., a force sensor, of a pump. After placing liquid into a tube set that is coupled to a pump, an air bubble is injected into the tube, the pump is activated so as to advance the air bubble past a bubble detector of the pump, while simultaneously measuring the volume of the air bubble. The tube is then occluded downstream of the air bubble and the pump is used to further pump a volume of liquid so as to compress the air bubble. Based on knowing the measured volume of the bubble and the volume of liquid pumped in order to compress the bubble, an expected increase in pressure in the tube is assessed, e.g., calculated. A sensor of the pump, e.g., a force sensor, measures the increase in force in the tube due to the compression of the air bubble, and the expected increase in force may be compared to the measured increase in force in order to determine a level of accuracy of the sensor.
In accordance with some applications of the present invention, a method is provided for determining a parameter of a bubble detector of a pump, e.g., an optical bubble detector. For any given pump, the bubble detector has (a) a pump-specific liquid-signal, e.g., an analog-to-digital (A/D) signal of a specific value, when the bubble detector detects liquid, and (b) a pump-specific air signal, e.g., an A/D signal of a specific value, when the bubble detector detects air. If the bubble detector of a pump is in good working condition, e.g., is properly calibrated, then, while the pump is in use, (a) the values of the liquid-signals generated by the bubble detector when liquid is passing the bubble detector should typically fall within a predetermined range of values that is typically within a delta of +/−30 from the pump-specific liquid-signal, e.g., 30 out of 1024 for a 10-bit A/D signal, and (b) the values of the air-signals generated by the bubble detector when air is passing the bubble detector should typically fall within a predetermined range of values that is typically within a delta of +/−20 from the pump-specific air signal, e.g., 20 out of 1024 for a 10-bit A/D signal.
The inventor has realized that if a bubble detector that is in good working condition, e.g., is properly calibrated, happens to generate a signal (either a liquid-signal or an air-signal) that is outside of the respective expected predetermined range, that signal can be ignored as it is likely not due to a problem with the sensor, but rather a measurement error (e.g., a data transfer error). Correspondingly, it is highly unlikely for a bubble detector that is not in working order, e.g., not properly calibrated, to “accidentally” generate a signal that is within the expected predetermined range. Thus, for example, if a given bubble detector generates a liquid-signal having a value that is within the respective predetermined range, but generates an air-signal having a value that is not within the respective predetermined range, it can still be assumed that the bubble detector is in working order, and that likely an unrelated circumstance caused the air-signal to be out of range. The same is true vice versa, i.e., if a given bubble detector generates an air-signal having a value that is within range, but a liquid-signal that is out of range, it can still be assumed that the bubble detector is in working order. This assumption is further substantiated by the successful completion of the rest of the test, further described hereinbelow, as the measurement of the air bubble size and the calculated pressure all depend on the bubble detector being in good working order.
After placing liquid into a tube set that is coupled to a pump, an air bubble is injected into the tube, and the pump is used to advance the air bubble to and past the bubble detector of the pump. A parameter of the bubble detector may be determined by measuring respective values of the liquid-signals generated by the bubble detector as the liquid is passing the bubble detector and air-signals generated by the bubble detector when the bubble is passing the bubble detector. If at least one of the two signals, i.e., if the generated liquid-signal or the generated air-signal, is within the respective predetermined range of values, then a determination may be made that the bubble detector is in working order, e.g., is properly calibrated.
In accordance with some applications of the present invention, a specialized tube set is provided for carrying out the various tests, which are typically carried out in succession, as further described hereinbelow. The tube set includes (a) a reservoir for holding the liquid, e.g., water, (b) an air port for insertion of air into the tube and (c) a tube cartridge for operatively coupling the tube to a pump at a specific location along the tube, such that there is a predetermined distance (which translates to a predetermined volume of liquid when the tube is filled with liquid) between the air port and the pump when the tube set is coupled to a pump, and (d) a tube-occluding element coupled to the tube downstream of the tube cartridge for occluding liquid flow within the tube. Thus, when the air bubble is injected into the tube, there is a predetermined volume of liquid between the air bubble and the pump.
An air bubble may be injected into the tube and the pump may be used to pump the predetermined volume of liquid between the air bubble and the pump, while simultaneously measuring the volume of the liquid being pumped. When the pump detects the air bubble, as described hereinabove, the known volume of liquid pumped is compared to the measured volume in order to determine a parameter of the pump. The pump is then used to continue advancing the same air bubble past the pump in order to measure a volume of the air bubble. After the air bubble is past the pump, the tube is occluded downstream of the air bubble and the pump is used to pump a further volume of liquid so as to compress the air bubble. As described hereinabove, a sensor of the pump, e.g., a force sensor, measures the increase in force in the tube due to the compression of the air bubble, and an expected increase in force may be compared to the measured increase in force in order to determine a level of accuracy of the sensor. At any point during the advancing of the air bubble through the tube set, liquid-signals and air-signals generated by the bubble detector are measured in order to determine a parameter of the bubble detector. Thus, by moving a single air bubble through the tube set, all three of the abovementioned calibration tests may be performed for a given pump.
Dimensions of the tube set are typically set such that the length of the tube segment that is disposed between the pump and the tube-occluding element is longer than the length of the tube segment that is between the air port and the reservoir. When the air bubble is injected into the tube, the length of the air bubble typically spans the entire length of tube between the air port and the reservoir. The length of the tube segment between the pump and occluding element being longer than the length of the tube segment between the air port and the reservoir allows for the pump to be able to advance the entirety of the air bubble past the pump while the tube-occluding element remains downstream of the air bubble.
Additionally, dimensions of the tube set are typically set such that the length of tube segment that is disposed between the pump and the tube-occluding element is shorter than the length of the tube segment between the air port and the pump. After a given pump is coupled to the tube segment and the abovementioned tests performed, the pump may be disconnected from the tube set and another pump coupled to the tube set in its place. The air bubble, following having been used in performing the tests on the first pump, is typically still in the tube set, between the pump and the tube-occluding element. The length of the tube segment between the pump and the tube-occluding element being shorter than the length of the tube segment between the air port and the pump ensures that as a second bubble is advanced from the air port to the pump, the entirety of the first air bubble that was disposed between the pump and the tube-occluding element will have advanced past the occluding element. Thus, the first air bubble remains within the tube set during the testing of the next pump, yet the first air bubble has no effect on the tests being performed on the next pump—it will simply advance through the tube set as the next pump is tested, typically making its way back to the reservoir where it exits the tube.
There is therefore provided, in accordance with some applications of the present invention, a method for use with a pump, the method including:
placing liquid in a tube that is coupled to the pump;
creating an air bubble in the tube by injecting air into the tube in a manner that does not increase pressure within the tube;
using the pump to measure a volume of the air bubble;
subsequently, occluding the tube downstream of the air bubble;
using the pump, increasing pressure within the tube by pumping a volume of liquid;
using the pump to measure the volume of liquid pumped;
assessing the increase in pressure within the tube based on the measured volume of liquid pumped and the measured volume of the air bubble;
using a sensor of the pump, measuring a sensed increase in pressure in the tube in response to the pumping of the volume of liquid; and
based on (i) the assessed increase in pressure and (ii) the sensed increase in pressure, determining a level of accuracy of the sensor.
For some applications, injecting the air into the tube includes injecting the air into the tube at a location that is upstream of the pump.
For some applications, occluding the tube downstream of the air bubble includes occluding the tube downstream of the pump.
For some applications, using the pump to measure the volume of the air bubble includes using the pump to advance the air bubble to, and past, a bubble detector of the pump.
For some applications, using the pump to measure the volume of the air bubble includes assessing the number of pumping cycles of the pump during the advancing of the air bubble past the bubble detector.
For some applications, assessing includes counting an integer number of pumping cycles of the pump.
For some applications, assessing includes assessing a non-integer number of pumping cycles of the pump.
There is further provided, in accordance with some applications of the present invention, a method for use with a pump, the method including:
placing liquid in a tube that is coupled to the pump;
creating an air bubble in the tube by injecting air into the tube in a manner that does not increase pressure within the tube, such that there is a predetermined volume of liquid between the air bubble and the pump;
using the pump to advance the air bubble along the tube to the bubble detector;
using the pump, measuring the volume of liquid pumped to advance the air bubble to the bubble detector; and
determining a parameter of the pump based on the measured volume.
For some applications, measuring the volume of liquid pumped to advance the air bubble to the bubble detector includes assessing the number of pumping cycles during which the pump advances the air bubble to the bubble detector.
For some applications, assessing includes counting an integer number of pumping cycles of the pump.
For some applications, assessing includes assessing a non-integer number of pumping cycles of the pump.
For some applications, determining the parameter of the pump includes determining a level of pumping accuracy of the pump.
For some applications, determining the parameter of the pump includes determining a volume of the liquid that is pumped per pumping cycle of the pump.
For some applications, the method further includes:
measuring a value of an air-signal generated by the bubble detector in response to the bubble detector detecting the air bubble; and
determining if a value of the air-signal is within a predetermined range of values for detection of an air bubble.
For some applications, measuring the value of the air-signal includes measuring the value of an analog-to-digital (A/D) air signal generated by the bubble detector in response to the bubble detector detecting the air bubble.
For some applications, the method further includes:
measuring a value of a liquid-signal generated by the bubble detector in response to the bubble detector detecting the liquid in the tube; and
determining if a value of the liquid-signal is within a predetermined range of values for detection of liquid.
For some applications, measuring the value of the liquid-signal includes measuring the value of an analog-to-digital (A/D) liquid signal generated by the bubble detector in response to the bubble detector detecting the liquid in the tube.
For some applications, the method further includes:
measuring a value of an air-signal generated by the bubble detector in response to the bubble detector detecting the air bubble; and
determining if a value of the air-signal is within a predetermined range of values for detection of an air bubble.
For some applications, measuring the value of the air-signal includes measuring the value of an analog-to-digital (A/D) air signal generated by the bubble detector in response to the bubble detector detecting the air bubble.
For some applications, using the pump to advance the air bubble along the tube to the bubble detector includes using the pump to advance the air bubble through a length of the tube that is 20-200 cm long.
For some applications, using the pump to advance the air bubble along the tube to the bubble detector includes using the pump to advance the air bubble from a location that is at a height of 0-100 cm above the pump, with respect to the direction of gravity.
For some applications, using the pump to advance the air bubble to the pump includes maintaining the air bubble between the height of the location above the pump and the pump, with respect to gravity during the advancing.
There is further provided, in accordance with some applications of the present invention, a method for use with a pump, the method including:
placing liquid in a tube that is coupled to the pump;
creating an air bubble in the tube by injecting air into the tube;
using the pump to advance the air bubble along the tube to a bubble detector of the pump;
measuring:
determining if at least one of the measured values is within a respective predetermined range of values; and
determining a parameter of the bubble detector based on the determination.
For some applications, (a) measuring the value of the liquid signal includes measuring the value of an analog-to-digital (A/D) liquid-signal generated by the bubble detector in response to the bubble detector detecting the liquid within the tube, and (b) measuring the value of the air signal includes measuring the value of an A/D air-signal generated by the bubble detector in response to the bubble detector detecting the air bubble within the tube.
There is further provided, in accordance with some applications of the present invention, a method for use with a pump, the method including:
For some applications, automatically measuring the volume of liquid pumped to advance the air bubble to the bubble detector includes automatically assessing the number of pumping cycles during which the pump advances the air bubble to the bubble detector.
For some applications, assessing includes counting an integer number of pumping cycles of the pump.
For some applications, assessing includes assessing a non-integer number of pumping cycles of the pump.
For some applications, assessing accuracy of the pump includes determining a level of pumping accuracy of the pump.
For some applications, assessing accuracy of the pump includes determining a volume of the liquid that is pumped per pumping cycle of the pump.
For some applications, using the pump to advance the air bubble along the tube includes driving the liquid within the tube that is downstream of the pump to advance along the tube and subsequently exit the tube into a reservoir from which the pump is operatively coupled to pump the liquid.
For some applications, using the pump to continue advancing the air bubble along the tube, past the bubble detector, includes using the pump to continue advancing the air bubble along the tube, past the pump.
For some applications, using the pump to measure the volume of the air bubble includes using the bubble detector of the pump to measure the volume of the air bubble.
For some applications, using the pump to measure the volume of the air bubble includes assessing the number of pumping cycles of the pump during the advancing of the air bubble past the bubble detector of the pump.
For some applications, assessing includes counting an integer number of pumping cycles of the pump.
For some applications, assessing includes assessing a non-integer number of pumping cycles of the pump.
For some applications, the method further includes: measuring a value of an air-signal generated by the bubble detector in response to the bubble detector detecting the air bubble; and
determining if a value of the air-signal is within a predetermined range of values for detection of an air bubble.
For some applications, measuring the value of the air-signal includes measuring the value of an analog-to-digital (A/D) air signal generated by the bubble detector in response to the bubble detector detecting the air bubble.
For some applications, the method further includes:
measuring a value of a liquid-signal generated by the bubble detector in response to the bubble detector detecting the liquid within the tube; and
determining if a value of the liquid-signal is within a predetermined range of values for the detection of liquid.
For some applications, measuring the value of the liquid-signal includes measuring the value of an analog-to-digital (A/D) liquid signal generated by the bubble detector in response to the bubble detector detecting the liquid in the tube.
For some applications, the method further includes:
measuring a value of an air-signal generated by the bubble detector in response to the bubble detector detecting the air bubble; and
determining if a value of the air-signal is within a predetermined range of values for detection of an air bubble.
For some applications, measuring the value of the air-signal includes measuring the value of an analog-to-digital (A/D) air signal generated by the bubble detector in response to the bubble detector detecting the air bubble.
For some applications, injecting the air into the tube includes injecting the air into the tube at a location that is upstream of the pump.
For some applications, the method further includes:
For some applications, occluding the tube downstream of the air bubble includes occluding the tube downstream of the pump.
For some applications, the pump is a first pump, and wherein the method further includes, subsequently to step (K):
(i) removing the occlusion of the tube,
(ii) disconnecting the first pump from the tube;
(iii) coupling a second pump to the tube; and
(iv) repeating steps (B) through (K) using the second pump.
For some applications, repeating steps (B) through (K) using the second pump includes repeating steps (B) through (K) without repeating step (A) prior to the repeating of steps (B) through (K).
For some applications, repeating steps (B) through (K) using the second pump includes repeating steps (B) through (K) without using the first pump to administer anything to a patient (i) following the completion of step (K) using the first pump and (ii) prior to the coupling of the second pump to the tube.
For some applications, repeating steps (B) through (K) includes using the same tube to repeat steps (B) through (K) 10-50 times using a respective pump each time.
For some applications, the air bubble created in step (B) using the first pump is a first air bubble, and wherein repeating step (B) using the second pump includes creating a second air bubble in the tube while the first air bubble remains within the tube at a location that is downstream of the pump.
For some applications, repeating steps (B) through (E) using the second pump includes driving the first air bubble to advance along the tube, such that repeating step (F) using the second pump comprises occluding the tube downstream of the second air bubble and not downstream of any part of the first air bubble.
For some applications, repeating steps (B) through (E) using the second pump includes driving the first air bubble to advance along the tube and subsequently exit the tube into a reservoir from which the pump is operatively coupled to pump the liquid.
For some applications, using the pump to advance the air bubble along the tube to the bubble detector includes using the pump to advance the air bubble through a length of tube that is 20-200 cm long.
For some applications, using the pump to advance the air bubble along the tube to the bubble detector includes using the pump to advance the air bubble from a location that is at a height of 0-100 cm above the pump, with respect to the direction of gravity.
For some applications, using the pump to advance the air bubble to the pump includes maintaining the air bubble between the height of the location above the pump and the pump, with respect to gravity during the advancing.
There is further provided, in accordance with some applications of the present invention, apparatus for use with a pump, the apparatus including:
a reservoir configured to hold a liquid;
a tube having a first segment, a second segment downstream of the first segment, and a third segment downstream of the second segment, the first segment coupled to the reservoir such that liquid from the reservoir is received within the first segment through an upstream end of the first segment, the tube being configured to be operatively coupled to the pump at a downstream end of the second segment and at an upstream end of the third segment;
an air port coupled to the tube at a downstream end of the first segment and at an upstream of the second segment, such that (a) the first segment of the tube is between the reservoir and the air port and (b) the second segment of the tube is between the air port and the pump when the tube is operatively coupled to the pump,
a tube-occluding element coupled to a downstream end of the third segment of the tube, and configured to be used to reversibly occlude the tube, such that a length of the third segment is:
For some applications, a length of the first segment of the tube is 2-50 cm.
For some applications, a length of the second segment of the tube is 20-200 cm.
For some applications, the length of the third segment of the tube is 20-80 cm.
For some applications, a length of the third segment of the tube is 20-50% longer than a length of the first segment.
For some applications, the length of the third segment is 20-50% longer than a length of the first segment, and wherein the length of the second segment is 20-80% longer than the length of the third segment.
For some applications, when the tube is operatively coupled to the pump the air port is disposed at a location that is at a height of 0-100 cm above the pump, with respect to gravity during the advancing.
For some applications, when the tube is operatively coupled to the pump the second segment of the tube is maintained between the height of the location above the pump and the pump, with respect to gravity during the advancing.
For some applications, (a) the tube has a fourth segment downstream of the third segment, (b) the tube-occluding element is coupled to an upstream end of the fourth segment and (c) a downstream end of the fourth segment is configured to be coupled to the reservoir such that liquid from the fourth segment is received within the reservoir through the downstream end of the fourth segment.
For some applications, a cap of the reservoir is coupled to the fourth segment of the tube, downstream of the third segment, prior to the tube being packaged for commercial sale such that while the apparatus is disposed within commercial packaging the cap of the reservoir is coupled to the tube.
For some applications, the air port includes a syringe that is coupled to the tube while the apparatus is disposed within commercial packaging.
For some applications, the apparatus further includes a tube cartridge that is fixed to the tube and is configured to be operatively coupled to the pump to allow action of the pump to pump fluid through the tube.
There is further provided, in accordance with some applications of the present invention, a computer software product, for use with:
the computer software product including a non-transitory computer-readable medium in which program instructions are stored, which instructions, when read by a computer cause the computer to perform the steps of:
There is further provided, in accordance with some applications of the present invention, a computer software product, for use with:
the computer software product including a non-transitory computer-readable medium in which program instructions are stored, which instructions, when read by a computer cause the computer to perform the steps of:
There is further provided, In accordance with some applications of the present invention, a computer software product, for use with:
the computer software product including a non-transitory computer-readable medium in which program instructions are stored, which instructions, when read by a computer cause the computer to perform the steps of:
There is further provided in accordance with some applications of the present invention, a computer software product, for use with:
the computer software product including a non-transitory computer-readable medium in which program instructions are stored, which instructions, when read by a computer cause the computer to perform the steps of:
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
Reference is now made to
Typically, cap 34 of reservoir 22 is coupled to tube 24 prior to tube 24 being packaged for commercial sale, i.e., cap 34 is coupled to tube 24 in commercial packaging 25. When tube set 20 is removed from commercial packaging 25, e.g., by the technician who is testing the pumps, reservoir 22 is filled with liquid, e.g., water, upstream end 26 of tube 24 is coupled to reservoir 22 via reservoir connector 30, and cap 34 used to close reservoir 22, thereby coupling downstream end 28 of tube 24 to reservoir 22.
Tube 24 of tube set 20 typically has at least four tube segments. A first segment 36, a second segment 38 downstream of first segment 36, a third segment 40 downstream of second segment 38, and a fourth segment 52 downstream of third segment 40. In use, first segment 36 is coupled to reservoir 22 (e.g., via reservoir connector 30 as described hereinabove) such that liquid from reservoir 22 is received within first segment 36 through an upstream end 42 of first segment 36. Tube 24 is operatively coupled to a pump at a downstream end 44 of second segment 38 and at an upstream end 46 of third segment 40. Typically, tube 24 is operatively coupled to the pump via a tube cartridge 48, through which is disposed a pump segment 50 of tube 24, pump segment 50 of tube 24 being between second segment 38 and third segment 40. Tube cartridge 48 is coupled to tube 24 at a fixed location along tube 24.
Fourth segment 52 typically leads back to reservoir 22 when tube set 20 is assembled, such that liquid 76 from fourth segment 52 is received within reservoir 22 through downstream end 54 of fourth segment 52. Cap 34 of reservoir 22 is typically coupled to fourth segment 52 of tube 24 at a downstream end 54 of fourth segment 52. Alternatively, for some applications, downstream end 28 of tube 24 may not lead back to reservoir 22, but rather may be set up to drain into an external receptacle as liquid is advanced through tube set 20.
An air port 56 is coupled to tube 24, typically via a connector 57, e.g., a Y-connector or a T-connector, at downstream end 58 of first segment 36 and at upstream end 60 of second segment 38, such that (a) first segment 36 of tube 24 is between reservoir 22 and air port 56 and (b) second segment 38 of tube 24 is between air port 56 and the pump when tube 24 is operatively coupled to the pump. For some applications, air port 56 includes (i) a syringe 62, (ii) a plunger 64 disposed within the barrel of syringe 62, (iii) a first one-way valve 66 positioned so as to allow fluid, e.g., air, to flow from air port 56 into first segment 36 of tube 24, and a second one-way valve 68 positioned so as to allow air from the external environment into air port 56, i.e., into syringe 62. Thus, air port 56 facilitates insertion of an air bubble into tube 24, i.e., into first segment 36 of tube 24, as further described hereinbelow with reference to
A tube-occluding element 70, e.g., a valve, is coupled to a downstream end 72 of third segment 40 and an upstream end 94 of fourth segment 52. Tube-occluding element 70 is used to reversibly occlude tube 24, e.g., by toggling the valve between open and closed positions, or sliding a clamp on and off tube 24.
Reference is now made to
Typically, dimensions of the various tube segments (further described hereinbelow) are selected such that (a) second segment 38 defines a predetermined volume of liquid between air port 56 and a pump when tube 24 is filled with liquid, (b) third segment of tube 24 is longer than first segment 36, and (c) third segment 40 of tube 24 is shorter than second segment 38.
As described hereinabove and further described hereinbelow with reference to
In accordance with some applications of the present invention, dimensions of the various segments and components of tube set 20 are as follows, further described hereinbelow:
When tube set 20 is assembled, and tube 24 is operatively coupled to a pump air port 56 is typically disposed at a location that is at a height H of at least 0 cm and/or less than 100 cm above the pump, with respect to gravity. Additionally, when tube 24 is operatively coupled to a pump, second segment 38 of tube 24 is maintained between the height of the location above the pump and the pump, with respect to gravity, further described hereinbelow with reference to
In accordance with some applications of the present invention, when tube set 20 is filled with liquid 76, the various segments and components of tube set 20 hold the following volumes of liquid:
Typically, a volume of fluid that is larger than the full volume that tube set 20 can hold, e.g., 2 ml larger, is used in order to prime the set, so as to ensure that indeed the entire tube 24 is filled with liquid 76. Thus, for example, if tube set 20 holds a total of 15.9 ml of liquid, then 17.9 ml of liquid is pumped using pump 100 in order to prime the set. Liquid droplets 110 in
For some applications, pump 100 measures the volume of liquid 76 that is pumped to advance air bubble 80 to bubble detector 102 by assessing, e.g., counting, the number of pumping cycles during which pump 100 advances air bubble 80 to bubble detector 102. Pump 100 may assess, e.g., count, an integer number of pumping cycles of pump 100 as well as a non-integer number of pumping cycles of pump 100. It is possible that when downstream end 116 of air bubble 80 reaches bubble detector 102, pump 100 may be in the middle of a pumping cycle. Thus, in order for pump 100 to measure the volume pumped it must know exactly where in the current pumping cycle bubble detector 102 detected downstream end 116 of air bubble 80. Typically, a DC motor that comprises an indexed encoder is used to run pump 100. When bubble detector 102 detects downstream end 116 of air bubble 80, exactly which encoder the DC motor is at indicates to pump 100 where in the pumping cycle pump 100 is, which indicates the volume pumped up to that point in the pumping cycle.
Based on the volume of liquid 76 that is pumped to advance air bubble 80 to bubble detector 102, as measured by pump 100, a parameter, e.g., accuracy of pump 100, e.g., a level of pumping accuracy of pump 100, is determined. Typically, the pumping accuracy is determined by a comparison between (i) the measured volume of liquid 76 pumped, e.g., as determined by the number of pump cycles counted by pump 100, and (ii) the predetermined volume of liquid 76 between downstream end 116 of air bubble 80 and pump 100, as defined by the dimensions of tube set 20 described hereinabove. For some applications, determining the accuracy of pump 100 includes determining a volume of liquid 76 that is pumped per pumping cycle of pump 100. In order for pump 100 to accurately maintain set flow rates while in operation, e.g., while delivering a therapeutic or diagnostic substance to a subject, it is important that the volume of liquid being pumped per pumping cycle be properly calibrated.
As described hereinabove, as air bubble 80 is advanced to bubble detector 102 of pump 100, air bubble 80 advances along a length of tube that is at least 20 cm and/or less than 200 cm, e.g., 99 cm, long. The inventor has realized that if second segment 38 is too short, the results of the pumping accuracy determination may not be accurate. Thus, it is important for second segment 38 of tube 24 to be long enough in order for the results of the pumping accuracy determination to be accurate.
The inventor has also realized that, due to the tendency of air to float in liquid, if tube 24 is positioned such that large portions of second segment 38 are vertical with respect to gravity, air bubble 80 may tend to float upwards while pump 100 is trying to advance it toward bubble detector 102. Thus, when assembled, air port 56 and pump 100 are positioned such that pump 100 advances air bubble 80 from a location that is at height H above pump 100 with respect to the direction of gravity. Height H is at least 0 cm and/or less than 100 cm. Furthermore, the inventor has realized that it is advantages to ensure that the entire length of tube in second segment 38 is maintained between the height of air port 56 and pump 100 with respect to the direction of gravity, such that air bubble 80 is maintained between the height of air port 56 and pump 100 as air bubble 80 advances through second segment 38. Since second segment 38 is typically relatively long, e.g., 99 cm, a portion 120 of second segment is typically coiled up, such that the entire length of second segment 38 is situated between air port 56 and pump 100 with respect to the direction of gravity.
As described hereinabove, it is important that third segment 40 be longer than first segment 36 so as to ensure that the entirety of air bubble 80 is disposed within third segment 40 at this point in the test. Furthermore, it is possible that as air bubble 80 advances through tube 24, the air bubble will split into a plurality of smaller air bubbles that may be spaced apart from each other by small volumes of liquid 76. Thus, by the time air bubble 80 is past pump 100, the length of tube between downstream end 116 of air bubble 80 and upstream end 124 of air bubble 80 may be longer than length L1 of first segment 36 (where the air bubble was originally inserted). Thus, typically, length L5 of third segment 40 (shown in
With regards to potential user errors, the system as described hereinabove is generally immune to user errors having to do with insertion of air bubble 80. If the user inserts too much air, the excess air simply exits tube 24 into reservoir 22 without any effect on the length of the air bubble, as described hereinabove. If the user, in error, forgot to insert air bubble 80 but confirmed the insertion of air bubble 80, pump 100 will start to run as if to perform the first stage of the test, i.e., pumping accuracy determination. After pumping a predetermined volume of liquid 76 that is large enough such that downstream end 116 of air bubble 80 should have been detected by bubble detector 102, pump 100 will stop and alert the user than an error has occurred. The user will be given instructions to insert an air bubble and confirm in order to restart the test. If the user inserts air bubble 80, but does not insert enough air, e.g., less than 0.5 ml, then when pump 100 measures volume V0 of air bubble 80, pump 100 will stop and alert the user than an error has occurred. The user will be given instructions to insert another air bubble and confirm in order to restart the test.
After the upstream end of air bubble 80 is downstream of pump 100, the user is given instructions to occlude tube 24 downstream of air bubble 80 with tube-occluding element 70, and to confirm the occlusion in order to move on to the calibration test of an occlusion sensor, e.g., force sensor 104 of pump 100.
(i) P0 is typically atmospheric pressure prior to air bubble 80 being compressed,
(ii) V0 is the measured volume of air bubble 80 prior to being compressed,
(iii) V1 is the compressed volume of air bubble 80, which is calculated based on the volume pumped (Vp) and the measured volume V0, and
(iv) P1 is the calculated expected pressure when air bubble 80 is compressed. For example, if Vp=0.5*V0 then the expected pressure increase is 1 bar. If Vp=⅓*V0, then the expected pressure increase is 0.5 bar.
The occlusion sensor, e.g., force sensor, 104 then measures the increase dP (measured) in pressure within tube 24. The calculated (expected) and measured pressures are compared, and if the difference between them is within the tolerances of pump 100 then the test of the pressure sensor is considered to indicate proper functioning of pump 100, and if not, a malfunction of pump 100. For some applications, pump 100 pumps liquid 76 until pump 100 measures a volume pumped (Vp) that is equal to another value that is a percentage, e.g., 20%-60%, of volume V0 of air bubble 80. To avoid excess pressure, a maximum Vp (Vpmax) is typically set such that the pump stops if Vp>Vpmax, even if the expected pressure was not reached. This could potentially happen in a case where there are errors in V0 or dP measurements.
Based on the measured volume V0, the measured volume of liquid 76 pumped in order to compress air bubble 80, and the fact that before tube 24 was occluded liquid 76 within tube 24 was exposed to atmospheric pressure P0 of typically 1 bar, the following equation may be used to assess, e.g., calculate an expected increase in pressure dP(expected):
[P0+dP(expected)]*V1=P0*V0 [Eqn 1]
Thus, the expected increase in pressure of typically 0.5 bar is compared to the sensed increase in pressure dP (measured), as measured by occlusion sensor, e.g., force sensor, 104 in response to pump 100 pumping volume Vp, in order to assess the accuracy of occlusion sensor, e.g., force sensor, 104. As described hereinabove, if air bubble 80 is measured to be too small, e.g., less than 0.5 ml, then the user is asked to restart the test. This is due to the inventor having realized that if air bubble 80 is too small, the results of the force sensor accuracy determination may not be accurate.
Liquid-flow arrows 108, as shown in enlarged view circle 122, illustrate that when pump 100 is on after tube 24 has been occluded, liquid 76 flows toward air bubble 80, but there is no liquid flow downstream of air bubble 80 (due to the incompressible nature of the liquid). Thus, no liquid-flow arrows appear in third segment 40 downstream of air bubble 80, and no liquid-flow arrows appear in fourth segment 52.
After pump 100 measures the sensed increase in pressure dP (measured) and compares it with the expected, calculated, increase in pressure, e.g., 0.4 bar, pump 100 continues to pump liquid 76 until a sensed pressure of at least 1.0 bar and/or less than 1.6 bar, e.g., 1.2 bar, is sensed. This verifies that pump 100 can generate a pressure equal to a maximum occlusion setting, and can detect it. The user is then prompted with instructions to remove the occlusion of tube 24, e.g., to turn occlusion element 70 to an open position, or to remove a sliding clamp from tube 24, and to change the pump that is operatively coupled to tube set 20 and user interface device 74, such as is shown in
Reference is now made to
If the bubble detector 102 of a pump 100 is in good working condition, e.g., is properly calibrated, then, while the pump 100 is in use, (a) the values of the liquid-signals, e.g., A/D liquid-signals, generated by the bubble detector 102 when liquid is passing the bubble detector 102 should typically fall within a predetermined range of values that is typically within a delta of +/−30 from the value of the pump-specific liquid-signal for that pump 100, and (b) the values of the air-signals, e.g., A/D air-signals, generated by the bubble detector 102 when air is passing the bubble detector 102 should typically fall within a predetermined range of values that is typically within a delta of +/−20 from the pump-specific air signal for that pump 100. The larger empty circles 144 in
The inventor has realized that it is highly unlikely for a bubble detector 102 that is not in working order, e.g., not properly calibrated, to “accidentally” generate a signal that is within the expected predetermined range. Thus, for example, as illustrated by data point 152 in
Data point 148 represents the value of an A/D air-signal for one of the experiments performed using the pump #1 in the experiment. As shown, data point 148 is out of range, i.e., the difference between (a) the A/D air-signal measured for data point 148 and (b) the pump-specific A/D air-signal for the pump #1, is greater than a chosen delta (e.g., a delta of 20). However, as illustrated by dashed line 154, the corresponding data point 156, representing the A/D liquid-signal measured in the same experiment with pump #1 is within range, i.e., the difference between (a) the A/D liquid-signal measured for data point 156 and (b) the pump-specific A/D liquid-signal for the pump #1, is less than a chosen delta (e.g., a delta of 30). The inventor's realization that the above described pattern can be assumed to indicate a properly-working bubble detector is supported by the remaining data points representing values of the respective A/D liquid-signals and A/D air-signals for other experiments run with pump #1. It is apparent that the bubble detector of pump #1 is in proper working order.
Similarly, data point 150, representing the value of an A/D air-signal measured during an experiment with pump #2, is out of range, i.e., the difference between (a) the A/D air-signal measured for data point 150 and (b) the pump-specific A/D air-signal for the pump #2, is greater than a chosen delta (e.g., a delta of 20). However, as illustrated by dashed line 158, the corresponding data point 160, representing the value of an A/D liquid-signal measured during the same experiment with pump #2, is within range, i.e., the difference between (a) the A/D liquid-signal measured for data point 160 and (b) the pump-specific A/D liquid-signal for the pump #2, is less than a chosen delta (e.g., a delta of 30). Once again, the remaining data points from the other experiments performed with pump #2 confirm that pump #2 is in proper working order.
Similarly, data point 152, representing the value of an A/D liquid-signal measured during an experiment with pump #8, is out of range, i.e., the difference between (a) the A/D liquid-signal measured for data point 152 and (b) the pump-specific A/D liquid-signal for the pump #8, is greater than a chosen delta (e.g., a delta of 30). However, as illustrated by dashed line 162, the corresponding data point 164, representing the A/D air-signal measured in the same experiment with pump #8, is within range, i.e., the difference between (a) the A/D air-signal measured for data point 164 and (b) the pump-specific A/D air-signal for the pump #8, is less than a chosen delta (e.g., a delta of 20). Once again, the remaining data points from the other experiments performed with pump #8 confirm that pump #8 is in proper working order.
Thus, during the calibration testing procedure described hereinabove, a parameter of bubble detector 102 may be determined by measuring respective values of (a) the liquid-signals generated by bubble detector 102 as liquid 76 is passing bubble detector 102 and (b) the air-signals generated by bubble detector 102 when air bubble 80 is passing bubble detector 102. If at least one of the two signals, i.e., if the generated liquid-signal or the generated air-signal, is within the respective predetermined range of values, then a determination may be made that bubble detector 102 is in working order, e.g., is properly calibrated. For example, bubble detector 102 may be determined to be in working order already before air bubble 80 is detected by bubble detector 102 if the values of the generated liquid-signals, e.g., A/D liquid-signals generated by bubble detector 102 in response to liquid 76 advancing past bubble detector 102 are within the respective predetermined range.
Alternatively, if the values of the generated liquid-signals, e.g., A/D liquid-signals, are not within the predetermined range, then a determination may be made after measuring the value of the air signals, e.g., generated in response to bubble detector 102 detecting air bubble 80. If the generated air-signal, e.g., A/D air signal, is within the respective predetermined range, then bubble detector 102 is considered to be in good working order. If the values of both the generated liquid-signal, e.g., A/D liquid-signal, and the generated air-signal, e.g., A/D air-signal, are not within their respective predetermined ranges, then bubble detector 102 is determined to not be working properly, and the test is stopped. Typically, the user will be instructed at that point to remove the pump and start testing the next pump.
Similarly with the pumping accuracy test and occlusion sensor tests, if at any point a pump 100 or a component, e.g., sensor, of pump 100 is determined to not be in working order, the test is immediately stopped and the user asked to move on to the next pump. Typically, the entire test of first pump 100a takes approximately a minute and a half, and the entire test of subsequent pumps (for which tube set 20 does not have to be primed) takes about approximately a minute.
Applications of the invention described herein can take the form of a computer program product accessible from a computer-usable or computer-readable medium (e.g., a non-transitory computer-readable medium) providing program code for use by or in connection with a computer or any instruction execution system, such as user interface device 74. For the purpose of this description, a computer-usable or computer readable medium can be any apparatus that can comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Typically, the computer-usable or computer readable medium is a non-transitory computer-usable or computer readable medium.
Examples of a computer-readable medium include a semiconductor or solid-state memory, a random-access memory (RAM), a read-only memory (ROM). For some applications, cloud storage, and/or storage in a remote server is used.
A data processing system suitable for storing and/or executing program code will include at least one processor (e.g., a processor of user interface device 74) coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution. The system can read the inventive instructions on the program storage devices and follow these instructions to execute the methodology of the embodiments of the invention.
Network adapters may be coupled to the processor to enable the processor to become coupled to other processors or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
Computer program code for carrying out operations of some applications of the present invention may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the C programming language or similar programming languages.
It will be understood that the methods described herein can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer (e.g., user interface device 74) or other programmable data processing apparatus, create means for implementing the functions/acts specified in the methods described in the present application. These computer program instructions may also be stored in a computer-readable medium (e.g., a non-transitory computer-readable medium) that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instruction means which implement the function/act specified in the methods described in the present application. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the methods described in the present application.
User interface device 74 is typically a hardware device programmed with computer program instructions to produce a special purpose computer. For example, when programmed to perform the methods described herein, the computer processor typically acts as a special purpose computer processor. Typically, the operations described herein that are performed by computer processors transform the physical state of a memory, which is a real physical article, to have a different magnetic polarity, electrical charge, or the like depending on the technology of the memory that is used.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application claims the priority of U.S. 62/936,941 to Eitan, filed Nov. 18, 2019, entitled “Fast test for medical pump,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2056322 | Hoppe | Oct 1936 | A |
2393838 | Tarbox | Jan 1946 | A |
2743898 | King, Jr. | May 1956 | A |
2981115 | Beguin | Apr 1961 | A |
3443585 | Reinicke | May 1969 | A |
3511583 | Brown | May 1970 | A |
3677667 | Morrison | Jul 1972 | A |
3778195 | Bamberg | Dec 1973 | A |
3982722 | Bernard | Sep 1976 | A |
3982725 | Clark | Sep 1976 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4039269 | Pickering | Aug 1977 | A |
4155362 | Jess | May 1979 | A |
4178138 | Iles | Dec 1979 | A |
4236880 | Archibald | Dec 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4290346 | Bujan | Sep 1981 | A |
4320781 | Bouvet et al. | Mar 1982 | A |
4373525 | Kobayashi | Feb 1983 | A |
4450375 | Siegal | May 1984 | A |
4479797 | Kobayashi et al. | Oct 1984 | A |
4489863 | Horchos et al. | Dec 1984 | A |
4493706 | Borsanyi et al. | Jan 1985 | A |
4650469 | Berg et al. | Mar 1987 | A |
4671792 | Borsanyi | Jun 1987 | A |
4682135 | Yamakawa | Jul 1987 | A |
4690673 | Bloomquist | Sep 1987 | A |
4725205 | Cannon et al. | Feb 1988 | A |
4725407 | Usui | Feb 1988 | A |
4728265 | Cannon | Mar 1988 | A |
4741736 | Brown | May 1988 | A |
4748003 | Riley | May 1988 | A |
4755168 | Romanelli et al. | Jul 1988 | A |
4836752 | Burkett | Jun 1989 | A |
4867744 | Borsanyi | Sep 1989 | A |
4893991 | Heminway et al. | Jan 1990 | A |
4927411 | Pastrone et al. | May 1990 | A |
4954046 | Irvin et al. | Sep 1990 | A |
4954256 | Degen et al. | Sep 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
4981467 | Bobo, Jr. | Jan 1991 | A |
5074756 | Davis | Dec 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5088904 | Okada | Feb 1992 | A |
5096385 | Georgi et al. | Mar 1992 | A |
5103211 | Daoud et al. | Apr 1992 | A |
5151019 | Danby et al. | Sep 1992 | A |
5152680 | Okada | Oct 1992 | A |
5165874 | Sancoff et al. | Nov 1992 | A |
5213483 | Flaherty et al. | May 1993 | A |
5219327 | Okada | Jun 1993 | A |
5222946 | Kamen | Jun 1993 | A |
5246347 | Davis | Sep 1993 | A |
5257978 | Haber et al. | Nov 1993 | A |
5286176 | Bonin | Feb 1994 | A |
5290158 | Okada | Mar 1994 | A |
5308333 | Skakoon | May 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5395320 | Padda et al. | Mar 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5509439 | Tantardini | Apr 1996 | A |
5527295 | Wing | Jun 1996 | A |
5542826 | Warner | Aug 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5575309 | Connell | Nov 1996 | A |
5575631 | Jester | Nov 1996 | A |
5577891 | Loughnane et al. | Nov 1996 | A |
5584667 | Davis | Dec 1996 | A |
5593134 | Steber et al. | Jan 1997 | A |
5601420 | Warner et al. | Feb 1997 | A |
5628619 | Wilson | May 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5658252 | Johnson | Aug 1997 | A |
5660529 | Hill | Aug 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5683233 | Moubayed et al. | Nov 1997 | A |
5695473 | Olsen | Dec 1997 | A |
5704584 | Winterer et al. | Jan 1998 | A |
5742519 | McClendon et al. | Apr 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791880 | Wilson | Aug 1998 | A |
5791881 | Moubayed et al. | Aug 1998 | A |
5803712 | Davis et al. | Sep 1998 | A |
5807322 | Lindsey et al. | Sep 1998 | A |
5810323 | Winterer et al. | Sep 1998 | A |
5843035 | Bowman et al. | Dec 1998 | A |
5853386 | Davis et al. | Dec 1998 | A |
5876370 | Blomquist | Mar 1999 | A |
5888052 | Hill | Mar 1999 | A |
5896076 | Van Namen | Apr 1999 | A |
5909724 | Nishimura et al. | Jun 1999 | A |
5924852 | Moubayed et al. | Jul 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5935106 | Olsen | Aug 1999 | A |
5943633 | Wilson et al. | Aug 1999 | A |
5954485 | Johnson et al. | Sep 1999 | A |
5980490 | Tsoukalis | Nov 1999 | A |
5996964 | Ben-Shalom | Dec 1999 | A |
6024539 | Blomquist | Feb 2000 | A |
6095189 | Ben-Shalom | Aug 2000 | A |
6110153 | Davis et al. | Aug 2000 | A |
6146109 | Davis et al. | Nov 2000 | A |
6164921 | Moubayed et al. | Dec 2000 | A |
6165874 | Powell et al. | Dec 2000 | A |
RE37074 | Danby et al. | Feb 2001 | E |
6203296 | Ray et al. | Mar 2001 | B1 |
6213723 | Danby et al. | Apr 2001 | B1 |
6213739 | Phallen et al. | Apr 2001 | B1 |
6234773 | Hill et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6261262 | Briggs et al. | Jul 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6312227 | Davis | Nov 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6347553 | Morris et al. | Feb 2002 | B1 |
6371732 | Moubayed et al. | Apr 2002 | B1 |
6422057 | Anderson | Jul 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6519569 | White et al. | Feb 2003 | B1 |
6537244 | Paukovits et al. | Mar 2003 | B2 |
6544171 | Beetz et al. | Apr 2003 | B2 |
6558347 | Jhuboo et al. | May 2003 | B1 |
6572604 | Platt et al. | Jun 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6648861 | Platt et al. | Nov 2003 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6733476 | Christenson et al. | May 2004 | B2 |
6742992 | Davis | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6788199 | Crabtree et al. | Sep 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6902549 | Marmaropoulos et al. | Jun 2005 | B2 |
6942473 | Abrahamson et al. | Sep 2005 | B2 |
7018361 | Gillespie, Jr. et al. | Mar 2006 | B2 |
7022075 | Grunwald et al. | Apr 2006 | B2 |
7048720 | Thorne, Jr. et al. | May 2006 | B1 |
7059840 | Corwin et al. | Jun 2006 | B2 |
7122026 | Rogers et al. | Oct 2006 | B2 |
7131966 | Tamari | Nov 2006 | B1 |
7163385 | Gharib et al. | Jan 2007 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7525432 | Jackson | Apr 2009 | B2 |
7556481 | Moubayed | Jul 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7654976 | Peterson et al. | Feb 2010 | B2 |
7695255 | Ben-shalom et al. | Apr 2010 | B2 |
7698156 | Martucci et al. | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7762795 | Moubayed | Jul 2010 | B2 |
7840260 | Epley | Nov 2010 | B2 |
7892332 | Prisco et al. | Feb 2011 | B2 |
7896834 | Smisson, III et al. | Mar 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7938796 | Moubayed et al. | May 2011 | B2 |
7963946 | Moubayed et al. | Jun 2011 | B2 |
7998121 | Stringham | Aug 2011 | B2 |
8025634 | Moubayed et al. | Sep 2011 | B1 |
8029253 | Rotem et al. | Oct 2011 | B2 |
8142400 | Rotem et al. | Mar 2012 | B2 |
8182445 | Moubayed et al. | May 2012 | B2 |
8197235 | Davis | Jun 2012 | B2 |
8214231 | Martucci et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8241018 | Harr | Aug 2012 | B2 |
8257654 | Maus et al. | Sep 2012 | B2 |
8308457 | Rotem et al. | Nov 2012 | B2 |
8334768 | Eaton et al. | Dec 2012 | B2 |
8337168 | Rotem et al. | Dec 2012 | B2 |
8343111 | Beck et al. | Jan 2013 | B2 |
8352290 | Bartz et al. | Jan 2013 | B2 |
8363583 | Jia et al. | Jan 2013 | B2 |
8371832 | Rotem et al. | Feb 2013 | B2 |
8444587 | Kelly et al. | May 2013 | B2 |
8489427 | Simpson et al. | Jul 2013 | B2 |
8535025 | Rotem et al. | Sep 2013 | B2 |
8579816 | Kamath et al. | Nov 2013 | B2 |
8666367 | Sharp et al. | Mar 2014 | B2 |
8672875 | Vanderveen et al. | Mar 2014 | B2 |
8678793 | Goldor et al. | Mar 2014 | B2 |
8920144 | Rotem et al. | Dec 2014 | B2 |
9056160 | Rotem et al. | Jun 2015 | B2 |
9194390 | Ruiter | Nov 2015 | B1 |
9726167 | Schweitzer et al. | Aug 2017 | B2 |
10894131 | Eitan et al. | Jan 2021 | B2 |
20010029321 | Beetz et al. | Oct 2001 | A1 |
20020056675 | Hegde | May 2002 | A1 |
20020094287 | Davis | Jul 2002 | A1 |
20020156402 | Woog et al. | Oct 2002 | A1 |
20020165503 | Morris et al. | Nov 2002 | A1 |
20030034887 | Crabtree et al. | Feb 2003 | A1 |
20030040700 | Hickle et al. | Feb 2003 | A1 |
20030065536 | Hansen et al. | Apr 2003 | A1 |
20030109988 | Geissler et al. | Jun 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030141468 | Malmstrom et al. | Jul 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030182586 | Numano | Sep 2003 | A1 |
20040167804 | Simpson et al. | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040191112 | Hill et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040204685 | Wright et al. | Oct 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20050001369 | Cross | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050088409 | Van Berkel | Apr 2005 | A1 |
20050107923 | Vanderveen | May 2005 | A1 |
20050112001 | Bahnen et al. | May 2005 | A1 |
20050171501 | Kelly | Aug 2005 | A1 |
20050191196 | Tanner et al. | Sep 2005 | A1 |
20050214146 | Corwin et al. | Sep 2005 | A1 |
20060051218 | Harttig | Mar 2006 | A1 |
20060083644 | Zumbrum et al. | Apr 2006 | A1 |
20060173412 | Susi | Aug 2006 | A1 |
20060173419 | Malcolm | Aug 2006 | A1 |
20060189926 | Hall et al. | Aug 2006 | A1 |
20060213249 | Uram et al. | Sep 2006 | A1 |
20070032098 | Bowles et al. | Feb 2007 | A1 |
20070048161 | Moubayed | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070123781 | Callahan et al. | May 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070154336 | Miyazaki et al. | Jul 2007 | A1 |
20070179435 | Braig et al. | Aug 2007 | A1 |
20070217931 | Estes et al. | Sep 2007 | A1 |
20070269324 | Goldor et al. | Nov 2007 | A1 |
20080015506 | Davis | Jan 2008 | A1 |
20080065007 | Peterson et al. | Mar 2008 | A1 |
20080065016 | Peterson et al. | Mar 2008 | A1 |
20080067462 | Miller et al. | Mar 2008 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080095649 | Ben-Shalom et al. | Apr 2008 | A1 |
20080144560 | Jia et al. | Jun 2008 | A1 |
20080145249 | Smisson et al. | Jun 2008 | A1 |
20080146995 | Smisson et al. | Jun 2008 | A1 |
20080275307 | Poschmann | Nov 2008 | A1 |
20080283296 | Zamora et al. | Nov 2008 | A1 |
20090031797 | Das | Feb 2009 | A1 |
20090088675 | Kelly et al. | Apr 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090203329 | White et al. | Aug 2009 | A1 |
20090221964 | Rotem et al. | Sep 2009 | A1 |
20090240201 | Rotem et al. | Sep 2009 | A1 |
20090270810 | Debelser et al. | Oct 2009 | A1 |
20090293588 | Riley et al. | Dec 2009 | A1 |
20090300507 | Raghavan et al. | Dec 2009 | A1 |
20090317268 | Rotem et al. | Dec 2009 | A1 |
20100016781 | Nakayama et al. | Jan 2010 | A1 |
20100036322 | Rotem | Feb 2010 | A1 |
20100082001 | Beck et al. | Apr 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100211002 | Davis | Aug 2010 | A1 |
20100212407 | Stringham et al. | Aug 2010 | A1 |
20100218586 | Rosinko et al. | Sep 2010 | A1 |
20100228223 | Williams et al. | Sep 2010 | A1 |
20100234708 | Buck et al. | Sep 2010 | A1 |
20100279652 | Sharp et al. | Nov 2010 | A1 |
20110148624 | Eaton et al. | Jun 2011 | A1 |
20110152772 | Rotem et al. | Jun 2011 | A1 |
20110152831 | Rotem et al. | Jun 2011 | A1 |
20110167133 | Jain | Jul 2011 | A1 |
20110190606 | Gable et al. | Aug 2011 | A1 |
20110251856 | Maus et al. | Oct 2011 | A1 |
20110264043 | Kotnik et al. | Oct 2011 | A1 |
20110276000 | Stringham | Nov 2011 | A1 |
20110282291 | Ciccone | Nov 2011 | A1 |
20110318208 | Goldor et al. | Dec 2011 | A1 |
20120059389 | Larson et al. | Mar 2012 | A1 |
20120062387 | Vik et al. | Mar 2012 | A1 |
20120136305 | Gagliardoni et al. | May 2012 | A1 |
20120241525 | Borges et al. | Sep 2012 | A1 |
20120330574 | Ruiter et al. | Dec 2012 | A1 |
20130006666 | Schneider et al. | Jan 2013 | A1 |
20130046508 | Sur et al. | Feb 2013 | A1 |
20130116620 | Rotem et al. | May 2013 | A1 |
20130116623 | Rotem et al. | May 2013 | A1 |
20130142670 | Rotem et al. | Jun 2013 | A1 |
20130209275 | Rotem et al. | Aug 2013 | A1 |
20130226129 | Unverdorben | Aug 2013 | A1 |
20130279370 | Eitan et al. | Oct 2013 | A1 |
20130345623 | Kopperschmidt et al. | Dec 2013 | A1 |
20140005631 | Rotem et al. | Jan 2014 | A1 |
20140048460 | Paolini et al. | Feb 2014 | A1 |
20140119954 | Schweitzer et al. | May 2014 | A1 |
20140121639 | Lowery et al. | May 2014 | A1 |
20140197824 | Gillespie et al. | Jul 2014 | A1 |
20140222377 | Bitan et al. | Aug 2014 | A1 |
20140228755 | Darrah et al. | Aug 2014 | A1 |
20140276564 | Schneider | Sep 2014 | A1 |
20140369872 | Goldor et al. | Dec 2014 | A1 |
20140378901 | Rotem et al. | Dec 2014 | A1 |
20150005699 | Burbank et al. | Jan 2015 | A1 |
20150038187 | Ho et al. | Feb 2015 | A1 |
20150073338 | Waldhoff et al. | Mar 2015 | A1 |
20150105726 | Qi et al. | Apr 2015 | A1 |
20150122052 | Rosinko et al. | May 2015 | A1 |
20150137988 | Gravenstein et al. | May 2015 | A1 |
20150141955 | Ruchti et al. | May 2015 | A1 |
20150172921 | Wang et al. | Jun 2015 | A1 |
20150182694 | Rosinko | Jul 2015 | A1 |
20150192120 | Rotem et al. | Jul 2015 | A1 |
20150367120 | Kusters | Dec 2015 | A1 |
20180200456 | Eitan et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
10118086 | Jul 2002 | DE |
0215249 | Mar 1987 | EP |
0225158 | Jun 1987 | EP |
0315312 | May 1989 | EP |
0429866 | Jun 1991 | EP |
0483794 | May 1992 | EP |
0858812 | Aug 1998 | EP |
1031358 | Aug 2000 | EP |
1350955 | Oct 2003 | EP |
1557186 | Jul 2005 | EP |
1611834 | Jan 2006 | EP |
1485149 | Jul 2008 | EP |
2632529 | Dec 1989 | FR |
2753236 | Mar 1998 | FR |
S60-43188 | Mar 1985 | JP |
H06-169992 | Jun 1994 | JP |
2002-057738 | Feb 2002 | JP |
2004141418 | May 2004 | JP |
8400691 | Mar 1984 | WO |
9116933 | Nov 1991 | WO |
9325816 | Dec 1993 | WO |
9408647 | Apr 1994 | WO |
9603168 | Feb 1996 | WO |
9630679 | Oct 1996 | WO |
9734084 | Sep 1997 | WO |
9804301 | Feb 1998 | WO |
9813080 | Apr 1998 | WO |
9847551 | Oct 1998 | WO |
9958178 | Nov 1999 | WO |
0139816 | Jun 2001 | WO |
0165232 | Sep 2001 | WO |
0236044 | May 2002 | WO |
0238204 | May 2002 | WO |
0249509 | Jun 2002 | WO |
02068015 | Sep 2002 | WO |
03027503 | Apr 2003 | WO |
03080158 | Oct 2003 | WO |
2004070548 | Aug 2004 | WO |
2004093648 | Nov 2004 | WO |
2005089263 | Sep 2005 | WO |
2006056986 | Jun 2006 | WO |
2007133259 | Nov 2007 | WO |
2008036658 | Mar 2008 | WO |
2008059492 | May 2008 | WO |
2008059493 | May 2008 | WO |
2008059495 | May 2008 | WO |
2008059496 | May 2008 | WO |
2008059498 | May 2008 | WO |
2008059499 | May 2008 | WO |
2008059494 | May 2008 | WO |
2008130644 | Oct 2008 | WO |
2009042061 | Apr 2009 | WO |
2009047721 | Apr 2009 | WO |
2010053702 | May 2010 | WO |
2010053703 | May 2010 | WO |
2010091313 | Aug 2010 | WO |
2011128850 | Oct 2011 | WO |
2012095827 | Jul 2012 | WO |
2012095829 | Jul 2012 | WO |
2013001425 | Jan 2013 | WO |
2013028704 | Feb 2013 | WO |
2013090748 | Jun 2013 | WO |
2017002023 | Jan 2017 | WO |
20170184777 | Oct 2017 | WO |
Entry |
---|
An Office Action dated Sep. 30, 2019, which issued during the prosecution of U.S. Appl. No. 15/740,365. |
An Office Action together with an English summary dated Jun. 23, 2020, which issued during the prosecution of Chinese Patent Application No. 201690050050.8. |
An International Search Report and a Written Opinion both dated May 30, 2012, which issued during the prosecution of Applicant's PCT/IB2012/050189. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001405. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001404. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001402. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001401. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001400. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001399. |
An International Preliminary Report on Patentability dated May 19, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001398. |
An International Search Report and a Written Opinion both dated Jun. 25, 2015, which issued during the prosecution of Applicant's PCT/IB2015/050873. |
An International Search Report and a Written Opinion both dated Feb. 24, 2015, which issued during the prosecution of Applicant's PCT/IB2014/062106. |
European Search Report dated Jun. 21, 2019 which issued during the prosecution of Applicant's European App No. 16817348.2. |
An International Preliminary Report on Patentability dated Oct. 16, 2012, which issued during the prosecution of Applicant's PCT/IB2011/051586. |
An International Preliminary Report on Patentability dated Jul. 16, 2013, which issued during the prosecution of Applicant's PCT/IB2012/050189. |
An International Preliminary Report on Patentability dated Jul. 16, 2013, which issued during the prosecution of Applicant's PCT/IB2012/050192. |
An Office Action dated Feb. 2, 2009, which issued during the prosecution of U.S. Appl. No. 10/535,103. |
An Office Action dated Aug. 19, 2010, which issued during the prosecution of U.S. Appl. No. 11/791,599. |
An Office Action dated Mar. 31, 2011, which issued during the prosecution of U.S. Appl. No. 11/791,599. |
Notice of Allowance dated Sep. 21, 2020, which issued during the prosecution of U.S. Appl. No. 15/740,365. |
An Office Action dated Jun. 22, 2020, which issued during the prosecution of U.S. Appl. No. 15/740,365. |
An Office Action dated Dec. 13, 2011, which issued during the prosecution of U.S. Appl. No. 12/463,399. |
An Office Action dated Jul. 21, 2011, which issued during the prosecution of U.S. Appl. No. 12/463,399. |
An Office Action dated Jan. 20, 2012, which issued during the prosecution of U.S. Appl. No. 12/514,310. |
An Office Action dated Jul. 21, 2011, which issued during the prosecution of U.S. Appl. No. 12/514,310. |
An Office Action dated May 25, 2012, which issued during the prosecution of U.S. Appl. No. 12/514,310. |
U.S. Appl. No. 62/278,617, filed Jan. 14, 2016. |
U.S. Appl. No. 62/185,737, filed Jun. 29, 2015. |
An Office Action dated Apr. 20, 2015, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Office Action dated Feb. 18, 2011, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Office Action dated Oct. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Office Action dated Sep. 16, 2010, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Office Action dated Apr. 6, 2012, which issued during the prosecution of U.S. Appl. No. 12/644,026. |
An Office Action dated Apr. 28, 2011, which issued during the prosecution of U.S. Appl. No. 12/644,027. |
An Office Action dated Aug. 19, 2014, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
U.S. Appl. No. 62/936,941, filed Nov. 18, 2019. |
An Office Action dated Apr. 24, 2014, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
An Office Action dated Jan. 6, 2014, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
An Office Action dated Jun. 9, 2015, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
An Office Action dated Mar. 16, 2015, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
An Office Action dated Nov. 4, 2013, which issued during the prosecution of U.S. Appl. No. 13/651,420. |
An Office Action dated Apr. 24, 2015, which issued during the prosecution of U.S. Appl. No. 13/681,440. |
An Office Action dated Feb. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/681,440. |
An Office Action dated Oct. 24, 2013, which issued during the prosecution of U.S. Appl. No. 13/681,440. |
An Office Action dated Sep. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/681,440. |
An Office Action dated Mar. 28, 2014, which issued during the prosecution of U.S. Appl. No. 13/742,454. |
An Office Action dated Oct. 7, 2013, which issued during the prosecution of U.S. Appl. No. 13/742,454. |
An Office Action dated Dec. 2, 2014, which issued during the prosecution of U.S. Appl. No. 13/924,572. |
An Office Action dated May 14, 2015, which issued during the prosecution of U.S. Appl. No. 13/924,572. |
An Office Action dated Jan. 23, 2015, which issued during the prosecution of U.S. Appl. No. 13/978,538. |
An Office Action dated Jul. 24, 2015, which issued during the prosecution of U.S. Appl. No. 13/978,538. |
An Office Action dated Oct. 15, 2014, which issued during the prosecution of U.S. Appl. No. 14/016,105. |
An Office Action dated Jun. 3, 2015, which issued during the prosecution of U.S. Appl. No. 14/181,673. |
An Office Action dated Dec. 24, 2013, which issued during the prosecution of U.S. Appl. No. 13/640,519. |
An Office Action dated Mar. 20, 2014, which issued during the prosecution of U.S. Appl. No. 13/640,519. |
An Office Action dated May 6, 2015, which issued during the prosecution of U.S. Appl. No. 13/640,519. |
An Office Action dated Oct. 1, 2014, which issued during the prosecution of U.S. Appl. No. 13/640,519. |
An Office Action dated Jun. 21, 2013, which issued during the prosecution of U.S. Appl. No. 13/229,798. |
An Office Action dated Dec. 26, 2012, which issued during the prosecution of U.S. Appl. No. 13/229,798. |
An Office Action dated Oct. 3, 2011, which issued during the prosecution of U.S. Appl. No. 12/464,202. |
An Office Action dated Jul. 5, 1999, which issued during the prosecution of U.S. Appl. No. 09/125,438. |
An Office Action dated May 3, 1999, which issued during the prosecution of U.S. Appl. No. 09/125,438. |
An Advisory Action dated Jul. 1, 2015, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Advisory Action dated Aug. 5, 2015, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Advisory Action dated Mar. 8, 2012, which issued during the prosecution of U.S. Appl. No. 12/463,399. |
An Office Action dated Jan. 23, 2012, which issued during the prosecution of European Patent Application No. 05810500.8. |
An Office Action dated Jul. 6, 2009, which issued during the prosecution of European Patent Application No. 05810500.8. |
An Office Action dated Nov. 3, 2014, which issued during the prosecution of European Patent Application No. 05810500.8. |
An Office Action dated Jul. 6, 2015, which issued during the prosecution of European Patent Application No. 10192477.7. |
An Office Action together with an English translation dated Jul. 13, 2010, which issued during the prosecution of Chinese Patent Application No. 200780041966.8. |
An Office Action together with an English translation dated Jul. 18, 2008, which issued during the prosecution of Chinese Patent Application No. 200580045471.3. |
An English translation of Notice of Allowance dated Jan. 28, 2011, which issued during the prosecution of Chinese Patent Application No. 200780041966.8. |
An International Search Report dated Oct. 27, 2011, which issued during the prosecution of Applicant's PCT/IB2011/051586. |
An International Search Report dated Aug. 17, 2012, which issued during the prosecution of Applicant's PCT/IB2012/050192. |
An International Search Report dated Jan. 15, 2013, which issued during the prosecution of Applicant's PCT/IB2012/053149. |
An International Search Report dated Jun. 11, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001398. |
An International Search Report dated Jan. 27, 1998, which issued during the prosecution of Applicant's PCT/IL1997/000289. |
An International Search Report dated Jan. 27, 1998, which issued during the prosecution of Applicant's PCT/IL1997/000290. |
An International Search Report dated Mar. 3, 2004, which issued during the prosecution of Applicant's PCT/IL2003/000947. |
An International Search Report dated Apr. 5, 2006, which issued during the prosecution of Applicant's PCT/IL2005/001249. |
An International Search Report dated Jun. 4, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001399. |
An International Search Report dated Jul. 15, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001400. |
An International Search Report dated Sep. 24, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001401. |
An International Search Report dated Jun. 20, 2008, which issued during the prosecution of Applicant s PCT/IL2007/001402. |
An International Search Report dated Jul. 14, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001404. |
An International Search Report dated Jul. 21, 2008, which issued during the prosecution of Applicant's PCT/IL2007/001405. |
Notice of Allowance dated Jun. 14, 2011, which issued during the prosecution of U.S. Appl. No. 11/791,599. |
Notice of Allowance dated Apr. 29, 2013, which issued during the prosecution of U.S. Appl. No. 12/463,399. |
Notice of Allowance dated Jul. 11, 2012, which issued during the prosecution of U.S. Appl. No. 12/464,202. |
Notice of Allowance dated Aug. 22, 2012, which issued during the prosecution of U.S. Appl. No. 12/514,310. |
Notice of Allowance dated Oct. 11, 2012, which issued during the prosecution of U.S. Appl. No. 12/644,026. |
Notice of Allowance dated Nov. 17, 2011, which issued during the prosecution of U.S. Appl. No. 12/644,027. |
Notice of Allowance dated Apr. 19, 2013, which issued during the prosecution of U.S. Appl. No. 13/229,798. |
Notice of Allowance dated Nov. 14, 2013, which issued during the prosecution of U.S. Appl. No. 13/229,798. |
Notice of Allowance dated Aug. 21, 2014, which issued during the prosecution of U.S. Appl. No. 13/742,454. |
Notice of Allowance dated Feb. 17, 2015, which issued during the prosecution of U.S. Appl. No. 14/016,105. |
Notice of Withdrawal from Issue dated May 13, 2013, which issued during the prosecution of U.S. Appl. No. 13/229,798. |
An Interview Summary dated Mar. 4, 2011, which issued during the prosecution of U.S. Appl. No. 12/514,311. |
An Office Action dated Dec. 31, 2014, which issued during the prosecution of Indian Patent Application No. 2344KOLNP2007. |
European Search Report dated May 10, 2011 which issued during the prosecution of Applicant's European App No. 10192477.7. |
European Search Report dated Aug. 18, 2014 which issued during the prosecution of Applicant's European App No. 12734200.4. |
Partial European Search Report dated Feb. 23, 2015 which issued during the prosecution of Applicant's European App No. 12805094.5. |
Partial European Search Report dated Nov. 13, 2014 which issued during the prosecution of Applicant's European App No. 11768544.6. |
A Response dated Dec. 28, 2011to a European Search Report which issued during the prosecution of Applicant's European App No. 10192477.7. |
A Response dated Apr. 2, 2015 to a European Search Report which issued during the prosecution of Applicant's European App No. 12805094.5. |
European Search Report dated Jun. 30, 2015 which issued during the prosecution of Applicant's European App No. 12805094.5. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 11/791,599 dated Jan. 11, 2011. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 11/791,599 dated May 23, 2011. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/463,399 dated Feb. 12, 2012. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/463,399 dated Oct. 21, 2011. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/464,202 dated Feb. 12, 2012. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,310 dated Jun. 28, 2012. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,310 dated Oct. 21, 2011. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,311 dated Dec. 9, 2010. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,311 dated Jan. 7, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,311 dated Jun. 21, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/644,026 dated Jul. 5, 2012. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/644,027 dated Jul. 21, 2012. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/299,798 dated Mar. 21, 2013. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/299,798 dated Oct. 21, 2013. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/463,399 dated Mar. 26, 2012. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,310 dated Apr. 25, 2012. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 12/514,311 dated Mar. 31, 2011. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/651,420 dated Jul. 22, 2014. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/681,440 dated Jul. 14, 2014. |
Request for Continued Examination and a Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/742,454 dated Jun. 29, 2014. |
Honeywell Sensing and Control, “FSSI500NSB force sensor”, Golden Valley, Minnesota, USA, 1998-2004 http://sccatalog.honeywell.com/imc/printfriendly.asp7FAM˜force&PN-FSSI500NSB (5 pages). |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 14/016,105 dated Jan. 14, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/978,538 dated May 21, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/924,572 dated Mar. 26, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/742,454 dated Jan. 6, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/681,440 dated Jan. 20, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/651,420 dated Nov. 21, 2013. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/651,420 dated May 14, 2015. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/651,420 dated Mar. 5, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/651,420 dated Dec. 18, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/640,519 dated Jun. 17, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/640,519 dated Jan. 16, 2014. |
A Response to an Office Action which issued during the prosecution of U.S. Appl. No. 13/640,519 dated Dec. 28, 2014. |
A Response to an Advisory Action which issued during the prosecution of U.S. Appl. No. 12/514,311 dated Jul. 20, 2015. |
A Response to an Office Action which issued during the prosecution of European Patent Application No. 05810500.8 dated May 22, 2012. |
A Response to an Office Action which issued during the prosecution of European Patent Application No. 05810500.8 dated Oct. 15, 2009. |
A Response to an Office Action which issued during the prosecution of European Patent Application No. 05810500.8 dated Mar. 9, 2015. |
A Response to an Office Action which issued during the prosecution of European Patent Application No. 13734200.4 dated Mar. 4, 2015. |
A Response to an Office Action which issued during the prosecution of European Patent Application No. 11768544.6 dated May 29, 2015. |
A Response to an Office Action which issued during the prosecution of Indian Patent Application No. 2344KOLNP2007 dated Aug. 7, 2015. |
European Search Repod dated Apr. 22, 2021 which issued during the prosecution of Applicant's European App No. 20208122.0. |
Number | Date | Country | |
---|---|---|---|
20210146032 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62936941 | Nov 2019 | US |