Electronic publishing, desktop publishing and other tasks involving print media or other media demand more than a stack of paper in an output tray of a laser printer or photocopier. Typically, many sheets must be bound into finished documents by a paper-handling accessory. Currently, machines exist to perform operations such as binding, folding, trimming, saddle stapling, and hole drilling. These finishing operations are typically performed on many sheets at a time, requiring high forces and powerful motors. Such machines are often expensive and large, depending on function, and often exceed the cost or footprint of desktop or office printers. As such, they are not well-suited to low-cost desktop finishing or other low-cost applications, for example.
The demands of e.g. electronic and desktop publishing are driving the need for more compact, low-cost, high-quality, and high-speed finishing machines suitable for use alone or with printers, photocopiers, and other machines. Prior-art solutions to making booklets, for example, have involved machines costing thousands of dollars for simple functions such as folding and stapling. They are often bulky, slow, and expensive. Current finishing techniques impose size, cost and power limits upon booklet-making devices and other fastening devices, and hinder the use of these devices in many applications.
Apparatus for closing a fastener includes a first member adapted to engage and bend a fastener toward a closed position, a second member defining a recessed fastener guide adapted to engage and bend the fastener toward the closed position, the recessed fastener guide being generally aligned with the first member to receive at least a portion of the fastener from the first member, structure for moving the first member, and structure for moving the second member relative to the first member to move the fastener toward the closed position.
Each fastener head 22 of fastener head assembly is one of a plurality of fastener heads together adapted to simultaneously discharge a plurality of fasteners into sheet media or other media transported by transporter 17. Alternatively, fastening device 10 includes just one fastener head 22. Each closing mechanism 27 of closing assembly 25 is one of a plurality of closing mechanisms adapted to simultaneously close the plurality of fasteners. Alternatively, fastening device 10 includes just one closing mechanism. Each closing mechanism is adapted to close one or more fasteners that are discharged in one or more different locations relative to the media.
Fastening device 10 includes motor 30 for actuating both transporter 17 and closing mechanisms 27. More specifically, motor 30 is connected to drive belts, linkages, or other connections for simultaneously actuating transporter 17 and closing mechanisms 27. Fastening device 10 also includes motor 40 for moving the plurality of fastener heads 22 to the different desired locations relative to the media. Motors 30 and 40 are DC brush motors, according to one embodiment, although other motor types are contemplated.
Fastening device 10 also includes support body 60, for supporting closing assembly 25 and the plurality of closing mechanisms 27. Support body 60 is biased toward fastener heads 22 by compliant biasing device 65. Biasing device 65 comprises one or more compression springs 67, according to one example. Compression springs 67 are connected to frame 70 and are adapted to provide compliance between frame 70 and closing assembly 25 via support body 60, to accommodate both large-thickness or small-thickness media, or stacks of media, being fastened by fastening device 10. Biasing device 65 generally minimizes jamming of media in fastening device 10. More specifically, for a booklet of 1.6 mm thickness, for example, compression springs 67 compress to accommodate that thickness. For a booklet of just 0.5 mm, for example, springs 67 do not compress as much but still apply appropriate pressure to hold the media within fastening device 10 without adverse slippage or other undesired movement. Additionally, springs 67 absorb the impact force generated when fastener heads 22 discharge fasteners into the media.
Frame 70 generally surrounds support body 60. Frame 70 also supports transporter assembly 15, fastener head assembly 20, and closing assembly 25. According to one embodiment, frame 70 is a single-piece sheet-metal frame designed to handle greater than 22 kg of stress without deformation. Other materials and constructions of frame 70 also are contemplated.
As shown in
According to one embodiment, each clinch 80 aligned with service position 82 is a non-active clinch that defines a service station for fastener heads 22, and the remaining clinches 80, aligned with positions 84, 86, are active clinches. Each closing mechanism 27 optionally includes a single clinch, a pair of clinches, three clinches, or more than three clinches. In the case where the fasteners are staples, clinches 80 are staple clinches. Clinches 80 are each adapted for operable engagement with a corresponding fastener head or dispenser 22. The plurality of fastener clinches 80 are adapted to generally simultaneously close a plurality of fasteners, for example two fasteners, discharged by fastener heads or dispensers 22.
As also shown in
Actuation mechanism 100 is supported by support body 60 and moves fastener clinches 80 to contact and close the fasteners in the media. Actuation mechanism 100 comprises motor 30, with belt or band 102 being driven by motor 30 and extending from motor 30 to closing assembly 25. Corners 103, e.g. in the form of pulleys, wheels, or other guide structure, guide belt 102 within the frame of fastening device 10 and/or within closing assembly 25. Belt 102 drives gear wheels 104, which are rigidly secured with respect to cams 105.
As shown in
Bearing posts 127 are rigidly attached to closing assembly 25, and tension springs 128 are secured to bearing posts 127. Tension springs 128 are adapted to hold cam followers 120, 125 in contact with cam surfaces 110, 115. Ends of tension springs 128 opposite bearing posts 127 are fixedly attached to closing mechanism 27, e.g. to one or both of cam followers 120, 125, or structure that itself is fixedly attached to or supported with respect to cam followers 120, 125.
Saddle assembly 130 also includes inner follower structure 140, also called a second saddle member or second member, which defines generally flat surface 143 extending generally parallel with surfaces 135 and at an angle with respect to surfaces 137. Inner follower structure 140 is in a rest position in
Cam follower 120 is adapted to move fastener clinch 80, including both first member or outer follower structure 132 and second member or inner follower structure 140, toward a respective fastener held within fastener head 22. When cam follower 120 moves outer follower structure 132 toward fastener head 22 to discharge a fastener, the discharge causes ends of the fastener to pierce through the media and engage or approach angled surfaces 137. Outdented portion 126 of cam 105 is adapted to then move second cam follower 125 and inner follower structure 140 to an extended position relative to first cam follower 120 and outer follower structure 132, to close the respective fastener in the media. Such movement and closing occur when first cam follower 120 is itself in a highest or most extended position. More specifically, outdented portion 126 moves second cam follower 125 from the rest position of
Thus, movement of cam follower 120 causes fastener clinch 80, including both outer follower structure 132 and inner follower structure 140, to move simultaneously toward an associated fastener head 22. During such movement, media positioned on or supported by outer follower structure 132, or on the remainder of closing assembly 25, moves toward fastener heads 22. In the illustrated embodiment, such movement is movement in an upward direction. Engagement of fastener head 22 by the media moved by fastener clinch 80 and the surrounding structure automatically causes discharge of a fastener from fastener head 22. Movement of cam follower 125 then occurs, due to engagement with outdented portion 126, causing movement of inner follower structure 140 relative to outer follower structure 132. Cam surface 115 drives cam follower 125, in the direction of fastener head 22, to cause inner follower structure 140 to move upwardly from the position illustrated in
Saddle assembly 130, when used in fastening sheets together, includes first saddle member or outer follower structure 132 as an example of means for applying force to release a staple or other fastener from staple dispenser or fastener head 22. Second saddle member or inner follower structure 140 is an example of means for clinching the fastener into a closed position, with the means for clinching 140 first moving simultaneously with and in the same direction as the means for applying 132 to both position sheets or other media and to apply the force to release the fastener from staple head or dispenser 22. Means for clinching 140 subsequently moves relative to means for applying 132 to clinch the fastener. Motor 30, first cam surface 110, first cam follower 120, second cam surface 115, and/or second cam follower 125 are an example of means for actuating both the means for applying 132 and the means for clinching 140. According to an alternative description, first cam surface 110 and first cam follower 120 are considered as part of the means for applying force 132, or as part of the first saddle member, and second cam surface 115 and second cam follower 125 as part of the means for clinching 140, or as part of the second saddle member. The means for actuating comprises a single motor 30, according to one embodiment.
Fastener clinch 200 of
With reference to
A method of closing fastener 250 includes engaging ends 255 of fastener 250 with first groove 205 of first closing member 132, as illustrated in
With reference to
With reference to
According to embodiments of the invention, channel or guide 205 is at least a portion of means for receiving and guiding ends 255 of fastener 250 within first member or mover 132, and channel or guide 210 as at least a portion of means for receiving and guiding ends 255 of fastener 250 within second member or mover 140 operably coupled with first mover 132. The means for receiving and guiding ends 255 of fastener 250 within first mover 132 is disposed on opposite sides of the means for receiving and guiding ends 255 of fastener 250 within second mover 140. Cam 105 and/or cam followers 120, 125 serve as at least a portion of means for moving both of the means for receiving and guiding simultaneously, and for moving them independently.
Embodiments of the invention provide a number of advantages. Channels or guides 205, 210 accurately and precisely guide ends 255 of fastener 250, bending fastener 250 from the open configuration of
The term “media” as used herein should be considered to include a single sheet or other element of media, and/or a stack of media, for example. The term “stack” as used herein should be considered to include two or more sheets or other elements of media in a generally or partially overlying configuration, for example. Media according to embodiments of the invention includes not only paper, but also cloth or other fabric, plastic, or any other material that is capable of fastening by staples or other fasteners. Such media also optionally includes sheets, pages, covers, transparencies, or other elements of a book, booklet, folder or other fastened stack. A wide variety of fasteners are also contemplated according to embodiments of the invention, in addition to staples.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes are optionally substituted for the specific embodiments shown and described without departing from the scope of the present invention. Embodiments of the invention, for example, are useable with a wide variety of external devices such as printers, copiers, facsimile machines, and other output devices or other devices. A wide variety of materials is contemplated for use for the various disclosed structural components, e.g. steel of sufficient hardness, DELRIN acetyl resin, ABS plastic, and other materials. Each cam 105, for example, is constructed of a material of sufficient hardness to withstand an effectively unlimited number of repetitive movements, e.g. one million rotations or more, for example H-13 steel of Rockwell Hardness (HRC) 49–51. Directional terminology, such as up, down, left, right, over, under, above, below, etc. is used for purposes of illustration and description only, and is not intended necessarily to be limiting. Those with skill in the chemical, mechanical, electro-mechanical, electrical, and computer arts will readily appreciate that the present invention may be implemented in a very wide variety of embodiments. This application is intended to cover any adaptations or variations of the embodiments discussed herein.
Number | Name | Date | Kind |
---|---|---|---|
1851621 | Ede | Mar 1932 | A |
2748388 | Cardani | Jun 1956 | A |
2755471 | Wittknhns et al. | Jul 1956 | A |
4194666 | Spehrley et al. | Mar 1980 | A |
4328919 | Lawrence et al. | May 1982 | A |
4344554 | Cross | Aug 1982 | A |
4557410 | Holden et al. | Dec 1985 | A |
4593847 | Hagemann | Jun 1986 | A |
5076483 | Olesen | Dec 1991 | A |
5141143 | Ebner et al. | Aug 1992 | A |
5413266 | Jairam | May 1995 | A |
5460314 | Udagawa | Oct 1995 | A |
5516025 | Eriksson | May 1996 | A |
5586710 | Golicz | Dec 1996 | A |
5662318 | Harada et al. | Sep 1997 | A |
5782467 | Johnson | Jul 1998 | A |
5818186 | Camino | Oct 1998 | A |
5862971 | Ebner | Jan 1999 | A |
H1842 | Tontarski | Mar 2000 | H |
6036074 | Manabe | Mar 2000 | A |
6056183 | Tanabe | May 2000 | A |
6099225 | Allen et al. | Aug 2000 | A |
6164513 | Yoshie | Dec 2000 | A |
6474388 | Boss | Nov 2002 | B1 |
6485606 | Boss | Nov 2002 | B1 |
6550756 | Trovinger | Apr 2003 | B1 |
6554267 | Trovinger | Apr 2003 | B1 |
6702172 | Håkansson | Mar 2004 | B1 |
20010026361 | Yamaguchi | Oct 2001 | A1 |
20020140153 | Trovinger et al. | Oct 2002 | A1 |
20050039319 | Aldana et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050042060 A1 | Feb 2005 | US |