The present disclosure generally relates to fastener driving tools, and specifically to such tools designed to operate with fasteners of varying sizes. The present driving tool automatically adjusts to differently sized fasteners to reduce jamming, thereby making the tools easier to use and having more accurate fastener delivery.
Power fastener driving tools are well known. Conventional driving tools are usually portable and are powered pneumatically or by combustion. Sample pneumatic tools are described in U.S. Pat. Nos. 4,932,480; 3,552,274; and 3,815,475, all of which are incorporated by reference. Combustion powered tools are described in commonly assigned U.S. Pat. Nos. 4,403,722; 4,483,473; 4,483,474; 5,197,646; and 5,263,439, all of which are incorporated by reference.
Such tools incorporate a tool housing enclosing the power source, such as a pneumatic cylinder or a small internal combustion engine. In combustion tools, the engine is powered by a canister of pressurized fuel gas also called a fuel cell. Power is generated from expansion of compressed gasses, either by burning of fuel in a combustion chamber or expansion of air in the pneumatic cylinder. Conventionally, a reciprocating piston having an elongated driver blade is actuated by the power source to drive the fasteners into workpieces. In most tools, an interlock prevents firing of the tool unless a workpiece contact element at the end of a nosepiece, or nosepiece assembly, is pressed against a workpiece.
Typically, the fasteners are collated into a strip and positioned within a feed slot or track in a magazine for sequentially advancing each fastener into a driving position within a driving bore of the tool. A shear block or guide surface is provided between the magazine and the bore for separating one fastener from adjacent fasteners in the magazine while guiding the fastener into the bore as being driven. While the tool and the magazine can accommodate nails of different lengths, substantially short nails can occasionally slightly tip or tumble near the magazine feed slot as the fasteners are being driven due to tool orientation, vibrations and unwanted movements of the tool. Such movements cause inaccurate driving of the fasteners and sporadic jamming of the fasteners within the tool.
One way to reduce tumbling and/or jamming of short fasteners is to provide a pivoting flap or lever in the magazine and shear block for guiding different length fasteners. Exemplary models of a fastener-size adjustment device are described in commonly assigned U.S. Pat. Nos. 5,437,404 and 6,808,101, both of which are incorporated by reference. With both of the above-referenced patents, the adjustment device is pivotally connected to the shear block and care must be taken to insure that a gap between the fastener and the adjustment device does not exist. This gap causes the tumbling and jamming of the short fasteners within the tool. However, it is difficult to reduce the gap automatically based on different lengths of the fasteners, and occasionally a user has to rotate the adjustment device manually to clear and prevent the jamming of the short fasteners. Therefore, there is a need for improving the adjustment device to accommodate fasteners of different lengths and prevent the tumbling and jamming of the short or smaller fasteners as they are being driven without requiring manual user intervention.
The present disclosure is directed to an automatic, adjustable nose chamber guide member for guiding fasteners of at least two different lengths as they are driven by a fastener driving tool. Specifically, the present nose chamber guide member automatically adjusts the size of a nosepiece opening based on a fastener length.
One aspect of the machine is that, as described in further detail below, there is no need for a user to manipulate the present nose chamber guide member while using the fastener driving tool. A consistent biasing action of the present guide member against an inner wall of a nosepiece provides continuous size adjustment between short and long fasteners. Thus, a gap between the fasteners and the present guide member is reduced automatically when shorter fasteners are present.
Another important aspect is that the present guide member is not susceptible to manufacturing tolerance issues. More specifically, the present nose chamber guide member accommodates fasteners of different lengths without having to meet strict tolerance limits and specifications. Unlike pivoting devices that require a perfect alignment of mating surfaces between adjacent moving elements, the present nose chamber guide member is actuated with generous tolerance limits. For example, the present guide member extends and retracts in a transverse direction to the direction of fasteners travelling in the nosepiece. This movement of the present guide member for aligning and guiding the fasteners into a driving bore are achieved without strenuous, narrow manufacturing tolerance limits.
In one embodiment, a fastener driving tool with an improved nose chamber guide member is provided for driving fasteners of at least two different lengths. Multiple fasteners in a magazine are guided toward a driving bore to be driven by a driver blade. A nosepiece bore a passageway of the fasteners. The guide member is operatively connected to the nosepiece and is configured for transitioning between a first position and a second position relative to the nosepiece in a direction transverse to an operational flow direction of the fasteners. In the first position, the guide member is disposed to align with the driving bore for allowing driving of the fasteners having a first length. In the second position, the guide member is disposed out of alignment with respect to the driving bore for allowing driving of the fasteners having a second length, which is longer than the first length.
In another embodiment, a nosepiece and nose chamber guide assembly is provided for a fastener driving tool that drives a fastener supplied from a magazine having a plurality of fasteners. A nosepiece is configured for attachment to the fastener driving tool and defining a portion of a bore. The bore has an opening for accommodating the fastener. A member is disposed adjacent the opening where the guide member is movably connected to the nosepiece and configured for transitioning between a first position and a second position relative to the nosepiece. In the first position, the member is substantially in alignment with an inner wall of the nosepiece defining the bore for guiding the fastener having a first length. In the second position, the member is out of alignment with the inner wall for guiding the faster having a second length, which is longer than the first length.
Referring now to
A strip of the fasteners 14 is accommodated in the magazine 18 and successively guided toward a driving bore or passageway 20 having a shape of preferably tubular barrel to be driven by a driver blade 22. The present magazine 18 is configured for accommodating strips of at least two different lengths of fasteners 14 and 14′ (short and long, unless indicated otherwise, “14” will apply to all lengths). Each fastener 14 is sequentially advanced into a driving position within the driving bore or passageway 20. A nosepiece 24 at least partially defines the passageway 20. The bore 20 extends from the resting position of the driver blade 22 near a body 28 of the tool 10 to an exit 30.
A rear opening 32 of the bore 20 receives the fasteners 14 from the magazine 18 oriented such that a lower portion or tip 34 of each fastener is facing the workpiece 16 and the fastener is oriented to be generally parallel with the bore. When the tool 10 is in contact with the workpiece 16 via a work contacting element (WCE) 36, which is mechanically connected to a trigger 38, in order to drive a fastener, the trigger 38 is activated by a user. At that moment, the driver blade 22 rapidly travels through the bore 20 and drives the fastener 14 through the remaining length of the bore into the workpiece 16.
Following the driving of the fastener 14, as the driver blade 22 retracts up the length of the bore 20 and moves upwardly past the opening 32, the next fastener is forced into the bore by the spring-loaded clip or magazine 18. At the next actuation of the trigger 38, the driver blade 22 travels downwardly in the bore 20 to push down the following fastener 14 into the workpiece 16. However, in conventional tools, when short fasteners 14 (
An important aspect of the present member 12 is that the guide member allows the tool 10 to automatically adjust to different length fasteners. For example, as the fasteners 14 are fed from the magazine 18, the improved guide member 12 operatively connected to the nosepiece 24 transitions between a first position and a second position relative to the nosepiece in a direction 40 transverse or generally perpendicular to an operational flow or feeding direction 42 of the fasteners (
Referring now to
More specifically, the nose chamber guide member 12 automatically extends and retracts based on the first and second lengths of the fasteners 14 at a substantially right angle to a feeding direction 42 of the fasteners in the magazine 18 (
For the long fasteners 14′, the nose chamber guide member 12 is retracted to the second position for guiding the fasteners into the driving bore 20 (
Referring now to
It is also contemplated that the first edge 52 of the nose chamber guide member 12 defines part of a fastener pathway toward the exit 30 and an upper portion 60 is inclined to facilitate a fastener location in the driving bore 20. The possibility of jamming is reduced by incorporating this feature. For example, as the fastener 14 moves downwardly under the action of the driver blade 22, the lower portion 34 of the fastener is properly guided by the inclined upper portion 60 even if the fastener tips or tumbles near the opening 32.
Referring now to
Although, as shown, the first rod 62 has a rectangular prism shape and the second rod 64 has a cylindrical tube shape, any suitable geometric shape, such as a hexagonal prism or a cone shape, is also contemplated. The guide member 12 is operatively connected to the nosepiece 24 for allowing longitudinal movement of the guide member between the first and second positions. Optionally, a support pin 66 (
Further, referring now to
While a particular embodiment of the present nose chamber guide member has been shown and described, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the present disclosure in its broader aspects and as set forth in the following claims.
This patent application is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 14/073,021, which was filed on Nov. 6, 2013, now U.S. Pat. No. 9,527,196, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3552274 | Bojan | Jan 1971 | A |
3815475 | Howard et al. | Jun 1974 | A |
3834602 | Obergfell | Sep 1974 | A |
4174802 | Maestri | Nov 1979 | A |
4304349 | Novak | Dec 1981 | A |
4389012 | Grikis | Jun 1983 | A |
4403722 | Nikolich | Sep 1983 | A |
4483473 | Wagdy | Nov 1984 | A |
4483474 | Nikolich | Nov 1984 | A |
4932480 | Golsch | Jun 1990 | A |
5197646 | Nikolich | Mar 1993 | A |
5263439 | Doherty et al. | Nov 1993 | A |
5335800 | Liu | Aug 1994 | A |
5437404 | Shkolnikov | Aug 1995 | A |
5452835 | Shkolnikov | Sep 1995 | A |
5813588 | Lin | Sep 1998 | A |
6053389 | Chu | Apr 2000 | A |
6279808 | Larsen | Aug 2001 | B1 |
6729524 | Yao | May 2004 | B1 |
6739490 | Shkolnikov | May 2004 | B1 |
6808101 | Laubach et al. | Oct 2004 | B2 |
7028875 | Beville | Apr 2006 | B1 |
7172103 | Fujiyama | Feb 2007 | B2 |
7516876 | Ohmori | Apr 2009 | B2 |
7628304 | Yamamoto | Dec 2009 | B2 |
9486904 | Gregory | Nov 2016 | B2 |
9498871 | Gregory | Nov 2016 | B2 |
9527196 | Segura | Dec 2016 | B2 |
9796072 | Young | Oct 2017 | B2 |
9827658 | Gregory | Nov 2017 | B2 |
9925652 | Foser | Mar 2018 | B2 |
20030094477 | Chen | May 2003 | A1 |
20040084499 | Tsai | May 2004 | A1 |
20080093410 | Canlas | Apr 2008 | A1 |
20080251565 | Chou | Oct 2008 | A1 |
20100206934 | Vallon et al. | Aug 2010 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2014/052204, dated Dec. 4, 2014 (8 pages). |
New Zealand First Examination Report for New Zealand Application No. 733142, dated Apr. 6, 2018 (4 pages). |
Canadian Office Action for Canadian Application No. 2,924,047, dated Jan. 27, 2017 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20170100826 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14073021 | Nov 2013 | US |
Child | 15386542 | US |