The present invention relates to a fastener driving tool, and more particularly, to an electrical fastener driving tool.
In a conventional fastener driving tool, energy is accumulated in a housing by a rotation of a motor, and the accumulated energy drives a plunger for driving a fastener into a workpiece. A coil spring is one example that accumulates energy therein by way of a driving force of the motor.
The fastener driving is performed by converting a kinetic energy of the plunger into fastener driving energy. However, surplus kinetic energy remains if the kinetic energy of the plunger is greater than the fastener driving energy. A bumper made from an elastic material such as a rubber is provided in order to absorb the surplus energy.
However, fastener driving energy may be small if the workpiece is made from a soft material. In this case, excessively large surplus kinetic energy remains, so that the impact may be transmitted to the cable. In the latter case, damage to the cable and to the motor drivingly connected to the cable may occur. Such drawback can be eliminated if a cable having a large diameter is used. However, resultant fastener driving tool becomes heavy and bulky. Further, flexibility of the cable may be degraded to cause loss of energy for the fastener driving. Consequently, instable fastener driving operation may occur.
It is therefore, an object of the present invention to provide a fastener driving tool having sufficient durability and capable of providing stabilized fastener driving operation.
In order to attain the above and other objects, the present invention provides a fastener driving tool including a housing, a motor, a plunger, a cable member, and a drum. The motor is provided in the housing. The plunger is provided in the housing and is movable between its top dead center and its bottom dead center for impacting a fastener in a fastener driving direction. The cable member is connected to the plunger for pulling the plunger from the bottom dead center to the top dead center. The drum is driven by the motor for winding the cable member by a length greater than a distance between the top dead center and the bottom dead center.
Preferably, the cable member is connected to the drum and is deflectable between the drum and the plunger when the plunger is at the bottom dead center.
With the above-described arrangement, the cable member is flexed or deflected when the plunger is moved to the bottom dead center. Since the cable member is made from a flexible material that allows the cable to be wound over the drum, an impact force generated at the plunger can be absorbed by the flexed cable member. Further, tensile force applying to the cable member can be reduced when the plunger is moved to the bottom dead center. Thus, prolonged durability of the fastener driving tool can result.
Preferably, the cable member is connected to the plunger at a first connecting position and to the drum at a second connecting position, and the cable member has a length from 1 mm to 10 mm greater than a linear distance between the first connecting position and the second connecting position when the plunger is at the bottom dead center.
With this arrangement, sufficient deflection of the cable member can be provided. Further, the deflection is not so increased, entanglement of the cable member with ambient components in the housing can be restrained or avoided.
Preferably, the cable member includes a cable portion having one end and another end connected to the drum, and a retained portion provided at the one end of the cable portion and retained by the plunger. The plunger has a retaining portion formed with a closed space defined by an end portion and formed with one of a bore and a groove extending through the end portion in the fastener driving direction. The retained portion is movable in the closed space in the fastener driving direction, and the cable portion extends through the one of the bore and the groove which prevents the retained portion from passing therethrough. The retained portion is spaced away from the end portion when the plunger is at the bottom dead center. In this state, the retained portion is spaced away from the end portion by a distance not less than twice as large as a diameter of the cable portion.
With this arrangement, the plunger can be moved toward its top dead center upon abutment of the retained portion to the retaining portion. The retained portion is in abutment with the retaining portion for pulling the cable member during movement of the plunger toward its bottom dead center, so that the cable member is unwound from the drum. However, the abutment between the retained portion and the retaining portion is shut off or released when the plunger reaches its bottom dead center, so that the retained portion is moved away from the retaining portion. Therefore, mechanical association between the cable member and the plunger can be shut off at the bottom dead center, and accordingly, transmission of impact from the plunger to the cable member can be restrained. Even if the abutment between the retained portion and the retaining portion is maintained at the bottom dead center, transmission of impact from the plunger to the cable member can still be restrained since deflection occurs at the cable member in this instance.
In the cable member itself, inertial force acts on the cable member due to its rapid movement toward the bottom dead center. Stress concentration may occur due to the inertial force at the bottom dead center side of the cable member because of the sudden stop of the plunger at the bottom dead center. However, since the cable member can be deflected at the bottom dead center, stress concentration can be moderated or dispersed adequately to avoid bending or buckling of the cable member. In particular, the retained portion can be spaced away from the end portion by a distance not less than twice as large as a diameter of the cable portion when the plunger is at the bottom dead center. With such arrangement, impact transmission can be suitably restrained or reduced.
Preferably, the cable portion is rotatable about its axis with respect to the retaining portion. With this arrangement, any distortion or twisting does not occur in the cable member even if the plunger is subjected to a rotation force.
Preferably, the fastener driving tool further includes a nose supported to the housing and movable in the fastener driving direction with respect to the housing for guiding movement of a fastener driven by the plunger. The nose has a tip end in the fastener driving direction, and the plunger has a striking end protrudable from the tip end.
With this arrangement, the nose can remain or stay on the workpiece even if the housing is urged to be moved in a direction opposite to the fastener driving direction due to reaction force of the fastener driving operation. Thus, separation of the nose from the workpiece can be avoided at the fastener driving timing even if the nose is not strongly urged toward the workpiece. Since the striking end of the plunger protrudes from the tip end of the nose, the striking end can be moved toward the workpiece even if the housing is urged to be moved in the direction opposite to the fastener driving direction at the fastener driving timing. Consequently, the fastener can be accurately driven into the workpiece. Furthermore, the protruding arrangement can facilitate sharp shooting the fastener by aligning the striking end of the plunger with an intended fastener driving point.
Preferably, the fastener driving tool includes a nose urging spring interposed between the nose and the housing for biasing the nose in a direction opposite to the fastener driving direction. With this arrangement, the nose can be positioned close to the housing in a state where fastener driving operation is not performed.
Preferably, the fastener driving tool further includes a biasing spring associated with the plunger for biasing the plunger in the fastener driving direction. The biasing spring is configured to accumulate a driving force of the motor as a resilient energy. With this arrangement, acceleration of the plunger can be realized with a light-weight and simple structure.
In the drawings;
b) is a perspective view showing the clutch mechanism in a state that the drum rotates together with an output shaft;
c) is a perspective view showing the clutch mechanism in a state that a power transmission pin is located on a shut-off position;
d) is a perspective view showing the clutch mechanism in a state that a plunger is performing a nail driving operation;
e) is a perspective view showing the clutch mechanism in a state after the nail driving operation;
a) is a cross-sectional view showing a periphery of a nose portion in a state before the nail driving operation;
b) is a cross-sectional view showing a periphery of the nose portion in a state during the nail driving operation;
c) is a cross-sectional view showing a periphery of the nose portion in a state after the nail driving operation;
a) is a cross-sectional view of a portion including a plunger in the fastener driving tool according to the second embodiment, in which the plunger is about to move from its bottom dead center toward top dead center;
b) is a cross-sectional view of the portion including the plunger in the fastener driving tool according to the second embodiment, in which the plunger has moved to its top dead center;
c) is a cross-sectional view of the portion including the plunger in the fastener driving tool according to the second embodiment, in which the plunger has moved to its bottom dead center;
A fastener driving tool according to a first embodiment of the present invention will be described with reference to
The housing 2 is made from resin such as nylon and polycarbonate and accommodates therein the driving portion 3 and the like. A handle 21 is provided on an upper section of the housing 2 and is provided with a trigger 21A to control the driving portion 3. A battery 22 is detachably provided on the handle 21. The handle 21 is also provided with a power supply portion (not shown) to supply electric power supplied from the battery 22 to the driving portion 3.
The driving portion 3 mainly includes a motor 31 and a planetary gear mechanism 32. The motor 31 is provided on a lower section of the housing 2 and is located below the handle 21. The motor 31 has a driving shaft 31A directing perpendicular to the upper and lower direction. The planetary gear mechanism 32 is provided on an end of the driving shaft 31A and is a well-known gear mechanism including a sun gear, an orbital gear, and an output shaft 32A. The output shaft 32A of the planetary gear mechanism 32 is disposed coaxially with the driving shaft 31A. The planetary gear mechanism 32 can have a compact size, and reduced reduction ratio of the planetary gear mechanism 32 can be provided. Thus, a compact nail gun 1 can result, even if the reduction ratio of the planetary gear mechanism 32 is increased.
As shown in
As shown in
The pin supporting portion 42 is disposed at a position opposite to the driving portion 3 with respect to the guide plate 41. The pin supporting portion 42 is formed with a through-hole 42a. The pin supporting portion 42 is rotatable together with the output shaft 32A by fixedly inserting the output shaft 32A into the through-hole 42a. The pin supporting portion 42 has a projecting portion 42B extending in a direction substantially perpendicular to a penetration direction of the through-hole 42a. The projecting portion 42B is formed with a slit 42b extending in a direction substantially perpendicular to the penetration direction of the through-hole 42a.
The power transmission pin 43 has a pin groove sliding portion 43A located at one end thereof, a pin hook portion 43B located at another end thereof, and a pin sliding portion 43C located between the pin groove sliding portion 43A and the pin hook portion 43B. The pin sliding portion 43C is inserted into the slit 42b and slidable with respect to the pin supporting portion 42. The pin groove sliding portion 43A is inserted into the pin guide groove 41b while the power transmission pin 43 is inserted into the slit 42b. The power transmission pin 43 slidably circularly moves in the pin guide groove 41b.
The pin guide groove 41b has the oblong shape around the central axis of the output shaft 32A. The pin supporting portion 42 is fixed to the output shaft 32A, and is rotatable about the central axis of the output shaft 32A. Therefore, the power transmission pin 43 inserted into the pin guide groove 41b moves toward and away from the central axis of the output shaft 32A in the slit 42b in accordance with a change in angular rotational position of the pin supporting portion 42. The pin hook portion 43B has a plane substantially perpendicular to a circularly moving direction of the power transmission pin 43.
The drum hook 44 includes a bearing 44A formed with a through-hole. The output shaft 32A is inserted into the through-hole of the bearing 44A. The drum hook 44 is disposed at a position opposite to the guide plate 41 with respect to the pin supporting portion 42. The drum hook 44 is rotatable about the central axis of the output shaft 32A, but is not rotatable together with the output shaft 32A. The drum hook 44 includes a hook portion 44B extending in a direction perpendicular to the central axis of the output shaft 32A. The hook portion 44B is capable of contacting with the pin hook portion 43B while the drum hook 44 is assembled to the output shaft 32A.
A shaft supporting portion 45 is provided on a position opposite to the driving portion 3 with respect to the clutch mechanism 4. The shaft supporting portion 45 is fixed to the housing 2 and rotatably supports a distal end of the output shaft 32A. The shaft supporting portion 45 has one side facing the clutch mechanism 4, and includes a latched portion 45B on the one side. The latched portion 45B is capable of latching onto a latching portion 51A described later.
As shown in
The drum 51 includes the latching portion 51A protruding from one side surface thereof, the one side surface being positioned opposite to the clutch mechanism 4. The latching portion 51A and the latched portion 45B is configured to latch with each other in a state that the drum 51 is positioned at an angular rotational position where the drum 51 begins to wind the cable 52. Accordingly, the latching portion 51A and the latched portion 45B can define an initial position that the drum 51 begins to rotate.
A length of the circumference of the drum 51 is substantially four-thirds of a length that the coil spring 62 moves from a bottom dead center to a top dead center described later.
One end of the cable 52 is fixed to the cable guide groove 51b of the drum 51, and another end of the cable 52 is connected to an urging portion 63A described later. The cable 52 has fibrous steel wires bundled together as a wire bundle. A surface of the wire bundle is coated with a resin. Thus, the cable 52 has a high strength and flexibility. Since the surface of the wire bundle is coated with resin, the cable 52 does not damage to the drum 51 and the like such as scratching. Two guide pulleys 24A and 24B (
The cable 52 has a length 10 mm or less greater than a distance between the fixing position of the cable 52 to the urging portion 63A and the drum 51 assuming that no deflection occurs in the cable 52. Therefore, the cable 52 is deflected or flexed due to its own weight when the plunger 63 is positioned at its bottom dead center. Further, since the residual length of the cable 52 is not so long, excessively large deflection is not provided. Consequently, entanglement of the cable 52 with ambient components in the housing 2 does not occur or will be restrained.
The coil spring portion 6 mainly includes a spring guide 61, the coil spring 62, and the plunger 63. The spring guide 61 is provided in the housing 2 as a separate member. The spring guide 61 has cylindrically two-layer structure. An outer layer of the spring guide 61 is made from aluminum or resin such as nylon and polycarbonate and defines an outer peripheral surface of the spring guide 61. An inner layer of the spring guide 61 is made from steel having hardness the same as that of the coil spring 62 and defines an inner peripheral surface of the spring guide 61. An axis of the spring guide 61 is parallel to the upper and lower direction. Accordingly, the spring guide 61 has an abrasion resistance against the coil spring 62 and can have a lightweight structure. The inner peripheral surface of the inner layer is coated with an ultrahigh molecular weight polyethylene layer that has a low coefficient of friction.
The coil spring 62 is inserted into the spring guide 61. The coil spring 62 is made from steel and has an outer diameter that is slightly smaller than an inner diameter of the spring guide 61. As described above, the inner layer of the spring guide 61 is made from steel having the hardness the same as that of the coil spring 62. Thus, frictional wearing of the inner layer can be lower than that of an inner layer made from resin when the coil spring 62 and the urging portion 63A described later are slidingly moved with respect to the spring guide 61. Further, since the inner peripheral surface of the inner layer of the spring guide 61 is coated with the ultrahigh molecular weight polyethylene layer, the abrasion resistance of the spring guide 61 against the coil spring 62 can be further improved. Furthermore, since the spring guide 61 is a separate member with respect to the housing 2, only the spring guide 61 can be replaced by a new spring guide if the spring guide 61 is damaged or excessively worn.
As shown in
The blade 63B is an elongated plate and protrudes from a central portion of the urging portion 63A in a direction opposite to the cable 52. As shown in
As shown in
As shown in
The magazine 8 is detachably provided on the nose portion 7 and accommodates a plurality of nails 1A. Each of the plurality of nails 1A is supplied to be spanned between the base 71 and the nose 72 to be driven by the blade 63B.
In the above-described nail gun 1, when the nail 1A is to be driven into the workpiece W, firstly, a target position, into which the nail 1A is driven, of the workpiece W is decided by contacting the distal end of the blade 63B projecting from the lowest edge of the nose 72 to a driven area W1 of a surface of the workpiece W. Since the blade 63B is positioned on a trajectory through which a driven nail 1A passes and the target nail driving position can be determined by the blade 63B projecting from the lowest edge of the nose 72, the nail driven position can be defined easily and accurately.
In a state that the driving position is decided, a user pulls the trigger 21A to supply power to the motor 31 and to rotate the driving shaft 31A. Rotation of the driving shaft 31A is transmitted to the output shaft 32A by way of the planetary gear mechanism 32 that decelerates rotating speed of the driving shaft 31A.
As shown in
As shown in
The urging portion 63A connected to the other end of the cable 52 is pulled upwardly by the cable 52 winding upwardly against the urging force of the coil spring 62, and compresses the coil spring 62. A locus of the connection position between the urging portion 63A and the cable 52 passes through an inner region of the coil spring 62, the inner region being defined by an inner surface of the coil spring 62, and approximately in conformance with a central axis of the coil spring 62 while compressing the coil spring 62. Thus, the urging portion 63A can be pulled in a direction parallel to the central axis of the coil spring 62. Therefore, the urging portion 63A moves in a state that a surface, to which the coil spring 62 contacts, of the urging portion 63A is perpendicular to the central axis of the coil spring 62.
The outer diameter of the urging portion 63A is substantially the same as that of the coil spring 62. Accordingly, excessive contact of the urging portion 63A and the coil spring 62 with the spring guide 61 can be eliminated, and a load imparted on the motor 31 can be only a load of the compression of the coil spring 62, thereby providing low electricity consumption at the motor 31.
In a state shown in
Upon shutting off the transmission of the driving force to the drum 51, a pulling of the urging portion 63A by the cable 52 is stopped. Thus, the urging portion 63A rapidly moves toward the bottom dead center by the resilient energy of the coil spring 62, thereby impacting the nail 1A by the blade 63B. As shown in
The spring guide 61 has a cylindrical shape and accommodates the urging portion 63A therein. Thus, a space, in which the coil spring 62 is accommodated, in the spring guide 61 is substantially hermetically-sealed space. The urging portion 63A divides the space in the spring guide 61 into a first space positioned above the urging portion 63A and a second space positioned below the urging portion 63A. When the urging portion 63A moves from the top dead center toward the bottom dead center, the urging portion 63A compresses an air in the second space of the spring guide 61. In this case, the urging portion 63A is subject to so-called an air damper effect, and the rapid movement of the urging portion 63A may be prevented. However, the pair of air passages 63a are formed in the urging portion 63A, so that the first space and the second space are in fluid communication with each other via the pair of air passages 63a. Therefore, the air damper effect can be prevented, and the urging portion 63A can be moved from the top dead center toward the bottom dead center rapidly.
Further, since the inner peripheral surface of the inner layer of the spring guide 61 is coated with the ultrahigh molecular weight polyethylene layer, a contact resistance between the spring guide 61 and the coil spring 62, which is being moved toward the bottom dead center, can be reduced. Accordingly, a wasteful consumption of the resilient energy accumulated in the coil spring 62 can be prevented, thereby increasing the impact force for the nail 1A.
The plunger 63 is rapidly moves downwards by the displacement of the coil spring 62 toward the bottom dead center, whereupon the blade 63B strikes against the nail 1A. In this case, resilient energy in the coil spring 62 is converted into kinetic energy of the plunger 63, and the kinetic energy of the plunger 63 is converted into impacting energy against the nail 1A. Since the kinetic energy of the plunger 63 is greater than the impacting energy, the plunger 63 will be moved toward the bottom dead center after driving the nail 1A and strikes against the bumper 64.
At the striking timing, impact force is generated in the plunger 63, and the impact will be transmitted to the cable 52. However, the cable 52 is deflected or flexed when the plunger 63 is at its bottom dead center. Therefore, excessive tensile force is not applied to the cable 52 but the flexed cable 52 can easily absorb the impact. Accordingly, fracture of the cable 52 does not occur, and the flexed cable 52 can prevent the impact force from being transmitted to the driving portion 3. Consequently, the cable 52 should at least provide strength capable of moving the plunger 63 toward its top dead center against the biasing force of the coil spring 62. As a result, excessively large diameter cable or expensive and high strength cable is not required. Thus, a compact and light weight nail gun can be provided at low cost.
Further, almost all kinetic energy of the plunger 63 can make use of the impacting energy for driving the nail 1A, since a tension will not be applied to the cable 52 when the plunger 63 is at its bottom dead center. As a result, available impacting force can be obtained even if a smaller coil spring 62 providing a smaller resilient energy is employed, resulting in a compact and light-weight nail gun 1.
Upon moving the plunger 63 downward rapidly, the nail gun 1 other than the plunger 63 is subject to a reaction force as a counteraction. Unless the user presses the nail gun 1 toward the workpiece W strongly, the nose portion 7 may be moved away from the workpiece W, thereby moving away the nail gun 1 from the workpiece W. However, as shown in
As shown in
Further, as shown in
Next, a clutch mechanism according to a modification to the first embodiment of the present invention will be described with reference to
As shown in
The pin supporting portion 142 having a substantially disk shape is located at a position opposite to the driving portion 3 with respect to the guide plate 141, and is coaxially rotatably fixed with the output shaft 32A by a key. Further, the pin supporting portion 142 includes a pin urging spring 142A that urges the power transmission pin 143 toward the guide plate 141.
The power transmission pin 143 is movably supported in a direction parallel to the central axis of the output shaft 32A by the pin supporting portion 142 so that the one end portion of the power transmission pin 143 faces the guide plate 141 and another end portion of the power transmission pin 143 faces the drum 51. Further, the power transmission pin 143 is urged by the pin urging spring 142A toward the guide plate 141. Thus, the one end portion of the power transmission pin 143 consistently contacts with the guide plate 141.
The drum 51 is located at a position opposite to the guide plate 141 with respect to the pin supporting portion 142. The drum hook 144 is provided on a surface of the drum 51, the surface facing the pin supporting portion 142. Further, the drum hook 144 is capable of engaging with the other end of the power transmission pin 143 while the power transmission pin 143 is positioned on the rail portion 141A.
As shown in
Upon rotating the output shaft 32A by 270 degrees and positioning the plunger 63 at the top dead center, the one end of the power transmission pin 143 reaches the plane end surface 141C. Since the power transmission pin 143 is urged by the pin urging spring 142A toward the guide plate 141, the one end of the power transmission pin 143 moves from the rail portion 141A to the guide surface 141D, thereby releasing the other end of the power transmission pin 143 from the drum hook 144. Thus, the drum 51 becomes freely rotatable, thereby releasing the compressed coil spring 62, and impacting and driving the nail 1A by the blade 63B of the plunger 63.
Next, a fastener driving tool according to a second embodiment of the present invention will be described with reference to
A switch 221B is provided near a trigger 221A at a handle 221 in a housing 202. The switch 221B is connected to a battery 222. Upon pulling the trigger 221A, the switch 221B turns on to start electric power supply to the motor 231 from the battery 222.
A decelerating mechanism 232 is disposed between the motor 231 and the clutch mechanism 204 in a driving portion 203. The decelerating mechanism 232 includes pulleys 232A, 234A, a plurality of gears 232B, and a belt 234B. The pulley 232A is connected to a driving shaft 231A. The plurality of gears 232B is disposed between the pulley 234A and the clutch mechanism 204. The belt 234B is mounted over the pulley 232A and the pulley 234A. Rotation of the driving shaft 231A of the motor 231 is deceleratingly transmitted to the clutch mechanism 204 by the decelerating mechanism 232.
The clutch mechanism 204 has the configuration the same as that of the clutch mechanism 4, 104 of the forgoing embodiments. Thus, a connection between the drum 251 and clutch mechanism 204 is shut-off after the drum 251 rotates predetermined degrees that are degrees of rotation of the drum 251 for moving upwardly the plunger 263 from the bottom dead center to the top dead center.
The drum 251 is disposed in the housing 202 coaxially with the clutch mechanism 204 in the transmission portion 205. Further, the drum 251 is disposed in the housing 202 in such a manner that a tangent line of an outer circumference of the drum 251, the tangent line being coincident with the cable 252 wound over the outer circumference, substantially coincides with a central axis of a spring guide 261. Accordingly, the cable 252 can be wound along an axis of the spring guide 261, thereby moving the plunger 263 toward the top dead center.
The cable 252 connected to the drum 251 has a retained portion 252A and a cable portion 252B. The retained portion 252A is formed in a substantially spherical shape having a diameter larger than that of the cable portion 252B. The retained portion 252A is fixed to one end of the cable portion 252B, the one end of the cable portion 252B being opposite to another end of the cable portion 252B connected to the drum 251. A retained portion (not shown) is also provided on the other end of the cable portion 252B and is formed in a substantially spherical shape the same as that of the retained portion 252A. The retained portion (not shown) is retained by the drum 251. The cable portion 252B has fibrous steel wires bundled together as a wire bundle. A surface of the wire bundle is coated with a resin.
The cable portion 252B has a length about 10 mm or less greater than a distance between the fixing position of the cable portion 252B to the plunger 263 and the drum 251 (a distance between top dead center and the bottom dead center of the plunger 263) assuming that no deflection occurs in the cable portion 252B. Therefore, the cable portion 252B is deflected or flexed when the plunger 263 is positioned at its bottom dead center.
A coil spring portion 206 is provided which includes a spring guide 261, a coil spring 262, and the plunger 263. The spring guide 261 is provided below the drum 251. The coil spring 262 extends through the spring guide 261. The plunger 263 is urged by the coil spring 262.
As shown in
As shown in
As described above, the space 263a is closed upon threading engagement of the retaining portion 263C with the female thread 263D. The retaining portion 263C is formed with a bore 263b whose diameter is greater than the outer diameter of the cable portion 252B but smaller than the diameter of the retained portion 252A. Therefore, the bore 263b allows the cable portion 252B to pass therethrough, but prevent the retained portion 252A from passing therethrough. Thus, the plunger 263 is connected to the cable 252. Further, as shown in
When the nail 201A is to be driven by the above-described nail gun 201, a user pulls the trigger 221A to turn on the switch 221B and to electrically connect the battery 222 to the motor 231, thereby supplying electric power to the motor 231. Thus, driving force of the motor 231 is transmitted to the clutch mechanism 204 to rotate the drum 251 by way of the pulleys 232A and 234A, belt 234B, and the plurality of gears 232B.
Upon winding the cable portion 252B by rotation of the drum 251, the retained portion 252A is elevated and is brought into abutment with the retaining portion 263C as shown in
The connection between the drum 251 and the motor 231 is shut-off by the clutch mechanism 204 after the plunger 263 has moved to the top dead center. Accordingly, a force for pulling the plunger 263 toward the top dead center is shut-off, so that the plunger 263 is moved toward the bottom dead center for driving the nail 201A by the biasing force of the coil spring 262. Then, as shown in
Movement of the plunger 263 is stopped upon abutment with the bumper 264. However, since the cable 252 has a surplus length, the retained portion 252A can be slidingly moved within the space 263a to move away from the retaining portion 263C. As a result, mechanical association between the cable 252 and the plunger 263 is shut off. Consequently, transmission of any impact force occurring at the plunger 263 to the cable 252 can be avoided, and no excessive tensile force is applied to the cable 252 at this timing. Further, inertia force will be applied to the cable 252 due to rapid movement of the cable 252 from the top dead center to the bottom dead center. Therefore, stress concentration may occur at the bottom dead center side of the cable 252 due to a sudden stop of the plunger 263 at the bottom dead center. That is, unwanted bending or buckling may occur at the connecting portion of the cable 252 to the plunger 263. However, since break-off relationship is provided between the cable 252 and the plunger 263 at the bottom dead center, such bending or buckling can be restrained, and consequently, any breakdown of the cable portion 252B can be eliminated.
Further, the cable 252 may be distorted or twisted during assembly of the nail gun 201 or during winding of the cable 252 over the drum 251. However, since break-off relationship is provided between the cable 252 and the plunger 263 at the bottom dead center, the cable 252 can be rotated about its axis with respect to the plunger 263 to rectify the distortion.
While the invention has been described in detail with reference to specific embodiment thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention. For example, as shown in
Further, as shown in
Further, as shown in
Further, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2007-097506 | Apr 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/056965 | 4/2/2008 | WO | 00 | 9/9/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/123627 | 10/16/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2819466 | Campbell et al. | Jan 1958 | A |
3004260 | Van Den Elzen | Oct 1961 | A |
4323127 | Cunningham | Apr 1982 | A |
5320270 | Crutcher | Jun 1994 | A |
5511715 | Crutcher et al. | Apr 1996 | A |
5720423 | Kondo et al. | Feb 1998 | A |
6607111 | Garvis et al. | Aug 2003 | B2 |
6899260 | Sun | May 2005 | B2 |
6997367 | Hu | Feb 2006 | B2 |
7152774 | Chen | Dec 2006 | B2 |
7543728 | Spasov et al. | Jun 2009 | B2 |
7604149 | Tsai et al. | Oct 2009 | B2 |
20060175374 | Zahner et al. | Aug 2006 | A1 |
20080257934 | Tanimoto et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
196 29 762 | Jan 1997 | DE |
WO 2007142996 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100140316 A1 | Jun 2010 | US |