This invention relates to siding panels for covering the exterior of buildings and more particularly to a fastener guide used to facilitate proper location of fasteners along the length of a siding panel.
Vinyl siding is produced in a multitude of colors and styles, typically through extrusion of heated, colored plastic through a die shaped to impart the desired cross-sectional profile. The texture of the panel faces may be made to resemble wood clapboards or shingles. The most common type of individual vinyl siding panels resemble two courses of wooden clapboards attached to one another; other types resemble single clapboards. Siding panels are nailed or screwed through a nailing flange molded into the top of each siding panel in order to attach the panels to the exterior wall of a building to be clad in siding.
Vinyl siding is typically installed using lock-together panels or sub-components designed to accommodate the expansion and contraction of the vinyl material that typically occurs with temperature variations. This expansion and contraction can be quite significant in seamless siding applications wherein panels are typically extruded to a length sufficient to span the width of the attachment wall. Vinyl siding can distort if installed improperly—particularly if fasteners are not properly placed within the elongated slots provided in the nailing flange. A fastener should be placed in the center of a slot so that movement of the siding relative to the fastener can occur in either direction. In addition, fasteners should be attached loose enough to allow siding to slide past the fastener without binding.
In one common siding panel design, a J-shaped channel or trough is molded into the bottom of each siding panel, typically by forming the bottom edge of the panel so that it turns rearward (toward the wall) and upward. A generally U-shaped lip projects forward and downward from the panel near the bottom margin of the nailing flange. This lip is sized to interlock or fit within the channel of the above panel which is installed to overlap and overlie the nailing flange and lip of the panel below. Therefore, the bottom of each panel can be hooked onto the top portion of the previously installed panel below it and the nailing flange and nails are concealed by the overlying, upper panel. Even if double course panels are installed, therefore, it should not be evident to the observer which courses belong to a given panel; rather, the courses should present the appearance of individually installed courses of lap siding.
Unfortunately, during installation it is not uncommon for the installer to drive fasteners into the slots in the nailing flange such that, for example, two adjoining fasteners are each installed outward or each installed inward of the center point in their respective slots thereby limiting the length of travel available for the siding in that location. When such errors occur, distortion or rippling of the panel due to uneven panel movement during expansion or contraction of the panel can be considerable. Such distortion, seen as bending, twisting or outward flaring of individual panels is not only visually unattractive but may allow moisture infiltration to the cladded wall surface. In addition to the above problem of improper fastener placement within the slots, fasteners may be driven into the wall too tightly thereby causing binding even if the fastener is properly placed in the center of the slot.
Therefore there exists a need for a siding installation system that assures proper fastener placement within a nailing slot and that limits binding due to over-tightening of fasteners.
A system for attaching siding panels to the exterior wall of a building comprises a fastener guide member provided as an elongated strip of resilient material having a generally rectangular cross sectional profile, i.e. relatively wide front and rear faces and relatively narrow top and bottom edges. The strip is sized to fit inside or against the securement flange or nailing hem of a siding panel and includes fastener guides, preferably comprising holes, spaced apart along the length of the strip to align with corresponding slotted apertures in the securement flange. Since the apertures in the securement flange and the holes in the guide member have equally spaced centers, once one hole in the guide member is centered on one aperture in the securement flange all the other holes along the length of the guide member will be similarly centered on their corresponding apertures. During installation or attachment of the siding panels to the wall surface, fasteners such as screws are driven into each guide hole thereby assuring that all fasteners will be centered within securement flange apertures. During later expansion and contraction of the siding panels due to outdoor temperature fluctuations, each panel may simply slide as needed along its associated guide member to relieve internal stresses (which are greatest along the longitudinal axes of the panels). Since the guide members are directly attached to the wall, rather than the panels, and the fasteners are all appropriately spaced within the flange apertures, binding and distortion of the panels is greatly reduced.
In a further embodiment of the system, a collar is provided surrounding each guide hole, at least on the rearward side of the guide member but alternatively on each side thereof. The collars on the rearward side of the guide member are sized diametrically to pass through the corresponding apertures in the securement flange to thereby make contact with the attachment wall surface. These rearward collars are typically generally cylindrical in shape and of a length that exceeds the thickness of the flange so that even upon tightening of a fastener the collar causes the guide member to stand off from the wall a sufficient distance to prevent binding of the flange. In other words, the collars reduce friction between the flange and the wall surface by providing space for the flange to slide along the guide member even though the guide member itself is tightly fastened to the wall.
Other advantages of the invention will become apparent from the following description taken in connection with the accompanying drawings, wherein is set forth by way of illustration and example an embodiment of the present invention.
As required, a detailed embodiment of the present invention is disclosed herein; however, it is to be understood that the disclosed embodiment is merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
With reference to the drawings,
A lip 11 is formed along the upper edge 4 of the upper panel section 2 as an extension projecting downward and frontward from the upper edge 4 to form a downwardly opening U-shaped channel 12 along the upper edge 4 and then curving forward and upward to form an upwardly and rearwardly opening L-shaped channel 13. A rearward bend from the top of channel 13 returns to generally meet the vertical plane of a prospective attachment surface and then continues upward generally along said plane to form a nailing hem, fastener strip or securement flange 14. A forward and downward bend at the top 15 of the nailing hem 14 creates a downwardly opening U-shaped channel 16 extending between a forward wall 17 and a rearward wall 18 of the nailing hem 14. Both walls 17 and 18 of the nailing hem 14 have apertures 19 for accepting fasteners 20. Apertures 19 in the forward wall 17 are aligned with apertures 19 in the rearward wall 18 and both sets of apertures 19 are typically shaped as horizontally elongated slots 19.
An additional problem of the prior art attachment method described above, that can also lead to binding, is due to nails 20 being too forcefully driven into the attachment substrate A. Ideally, nails 20 are driven into the slots 19 until the nail head 21 touches the outer surface of the forward wall 17. This firmly attaches the panel 1 against the substrate A yet does not create excessive friction between the nail 20 and the panel 1 or the panel 1 and the substrate A. As illustrated in
As illustrated in
In the case of a double-walled nailing hem 14, the guide 22 is sized to fit within the channel 16 of the nailing hem 14 between the forward 17 and rearward 18 walls. Substantially circular holes or guides 23 are formed along the length of the guide 22 to project through the front 25 and rear 26 faces of the body 24 and are evenly spaced apart from one another to align with corresponding apertures 19 in the fastener strip 14 so that a fastener 20 passing through a slot 19 in the forward wall 17 passes through a corresponding hole 23 in the guide member 22 and then through a slot 19 in the rearward wall 18. A cross sectional view of the guide member 22 installed within the fastener strip 14 is provided in
When engaging a guide member 22 with a siding panel 1, the guide member 22 is positioned, as shown in
In a further embodiment of a fastener guide member 29, holes 23 are surrounded on the front face 25 of the body 24 by front collars 30 (see
The collars 30 and 31 may be generally cylindrical in shape or may be ovoid or oblong (see collar 30a in
Nailing hems or securement flanges of various designs may be used with fastener guides as described in the above embodiments, including a single wall nailing strip (not shown) having only a rearward wall 18. Such a nailing strip could be used with any of the embodiments of the fastener guide described above, the disadvantages of such a strip including, however, lack of a forward wall to hold the guide in place adjacent to the flange prior to installation. For this reason, it is advantageous if the rear collars 31 of the guide fit closely into the apertures 19 in the rearward wall 18 so that friction may hold the assembly in place during installation of the associated panel.
Fastener guide members 22 without collars, as shown in
The advantages of using a double wall fastener strip 14 include the ability to securely hold a guide in place prior to installation, including during packaging and shipping. The disadvantages may include loss of the benefits of using guides with collars, if the guide must be slid into place, or the necessity of having to enclose the guide within the walls of the strip during formation of the panel as described above. In the embodiment of a double wall fastener strip 37 (shown in
In order to hold the guide member 29 more securely in engagement with the nailing hem 40, the lower portion of the hem may be curved downward to form a lower guide engagement channel 43 to receive the bottom end 28 of the guide member 29 (thereby providing a means for the guide member 29 to snap securely into place). Forward of the lower guide engagement channel 43, a raised ridge 44 also may be provided to assist holding the guide member 29 within the channel 43.
It is to be understood that while certain forms of this invention have been illustrated and described, it is not limited thereto except insofar as such limitations are included in the following claims and allowable equivalents thereof. For example it is to be understood that instead of comprising holes, the guides could comprise areas of reduced thickness or score lines or other indicia or markings on or in the guide members 22, 29 or 35 to indicate where the fastener is to be driven.