The present disclosure relates generally to a fastener including threads.
Certain work vehicles have body panels that may be fastened to the chassis of the work vehicle. Typical fasteners for body panels are welded to the chassis and include a thread shaft. The threaded shaft of each fastener may extend through a respective aperture in the body panel, and a nut may be engaged with the threaded shaft to secure the body panel to the chassis. Because the fasteners are welded to the chassis, a protective coating may not be applied to the fastener and paint may not be applied to the chassis before welding. Accordingly, the chassis is typically painted after the welding process, and each fastener is covered (e.g., masked) during the painting process, thereby increasing the cost and duration of the painting process. In addition, because the protective coating may not be applied to the fastener before welding (e.g., during the fastener manufacturing process), the cost and duration associated with applying the coating may be increased.
In certain embodiments, a fastener including a body that extends between a first end and a second end and a head that is engaged with the body at the first end. Further, the body includes a first section with a first outer diameter and a first set of threads oriented in a first direction. Moreover, the body includes a second section with a second outer diameter and a second set of threads oriented in a second direction such that the second direction is opposite the first direction. Also, the first section is positioned closer to the head than the second section, and the first set of threads is self-tapping.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments.
Turn now to the drawings,
By way of example, the threaded self-tapping portion of the fastener may be engaged with an unthreaded aperture within the chassis of the work vehicle. A second threaded portion of the fastener, which extends from the threaded self-tapping portion, may extend through an aperture in a panel of the body 12. A nut may be engaged with the second threaded portion, thereby securing the body panel to the chassis. The threads of the threaded self-tapping portion and the threads of the second threaded portion are oriented in opposing directions, such that rotation of the fastener in a direction that would cause the threaded self-tapping portion to disengage the chassis increases the engagement of the second threaded portion with the nut, thereby substantially reducing or eliminating the possibility of unintentional disengagement of the fastener (e.g., due to vibration of the work vehicle). Because the fastener may be coupled to the chassis without welding, a protective coating (e.g., zinc coating) may be applied to the fastener during the manufacturing process. As a result, the cost of the fastener/protective coating may be reduced, as compared to a fastener having a protective coating applied after the fastener is welded to the chassis (e.g., due to the labor cost associated with manually coating the fastener after welding). In addition, the chassis may be painted before the fastener is coupled to the chassis, thereby eliminating the process of masking fasteners that are welded to the chassis before painting. As a result, the manufacturing cost of the work vehicle may be reduced. While the fastener is used within the work vehicle 10 in the current embodiment, the fastener described herein may be employed within any other suitable setting that may use a fastener to secure components together, among other suitable applications.
The body 28 of the fastener 20 also includes a first section 30 (e.g., first portion or first component), a third section 34 (e.g., third portion or third component), and a second section 36 (e.g., second portion or second component). The first section 30 is engaged with the head 24 at the first end 22 of the body 28. In addition, the first section 30 is engaged with the third section 34 at a distal 25 of the first section 30, and the third section 34 is engaged with the second section 36 at a distal end 29 of the third section 34. In some embodiments, the fastener 20 may not include a third section 34, such that the first section 30 directly engages the second section 36 at the distal 25 of the first section 30 without an intervening section.
In the illustrated embodiment, the first section 30 includes a first set of threads 32, and the second section 36 includes a second set of threads 38. The orientation of the two sets of threads are opposite one another. The first set of threads 32 are oriented such that the fastener 20 may be secured within an aperture via rotation of the fastener in a first direction 40 (e.g., counter clockwise direction or left-handed), and the second set of threads 38 are oriented such that a nut may be engaged with the fastener 20 via rotation of the nut in the first direction 40 (e.g., counter clockwise direction). In addition, rotation of the fastener 20 in a second direction 42 (e.g., clockwise direction or right-handed) drives the fastener to disengage the aperture and drives the fastener to further engage the nut. Accordingly, if vibrations induce the fastener 20 to rotate in the section direction 42, the engagement with the nut is increased. In addition, once installed, rotation of the fastener in the first direction 40 is substantially blocked by contact between the head 24 and the respective component. As such, the possibility of the fastener disengaging the respective components (e.g., the chassis and the body panel) is substantially reduced or eliminated. While the sets of threads of the fastener 20 have certain orientations in the illustrated embodiment, in other embodiments, the orientation of each set of threads may be reversed, such that the orientations of the two sets of threads are opposite one another.
A first diameter D1 (e.g., first inner diameter) corresponds to the diameter of the first section 30 of the body 28 at the nadir of the first set of threads 32, and a second diameter D2 (e.g., second inner diameter) corresponds to the diameter of the second section 36 of the body 28 at the nadir of the second set of threads 38. While the first diameter D1 is larger than the second diameter D2 in the illustrated embodiment, in other embodiments, the first diameter D1 may be equal to or smaller than the second diameter D2. Additionally, a third diameter D3 (e.g., first outer diameter) corresponds to the diameter of the first section 30 of the body 28 at the peak of the first set of threads 32, and a fourth diameter D4 (e.g., second outer diameter) corresponds to the diameter of the second section 36 of the body 28 at the peak of the second set of threads 38. In the current embodiment, the third diameter D3 is larger than the fourth diameter D4, but in other embodiments, the third diameter D3 may be equal to or smaller than the fourth diameter D4.
In the current embodiment, a protective layer 21 (e.g., coating, plating, or the like) is disposed on an outer surface of the fastener 20. For example, the protective layer 21 may be disposed on the head 24, the first section 30 (e.g., the first set of threads 32), the third section 34, the second section 36 (e.g., the second set of threads 38), or a combination thereof. In some embodiments, the protective layer 21 may substantially reduce oxidation (e.g., rust) of the fastener. In some embodiments, the protective layer 21 may substantially reduce stripping the threads. In certain embodiments, the protective layer 21 may provide a lubricant for the threads to facilitate fastening or unfastening of the fastener 20. For example, the protective layer 21 may include zinc (e.g., applied to the fastener via an electroplating process).
In the illustrated embodiment, the first set of threads 32 of the first section 30 are self-tapping, thereby enabling the first section 30 to engage material surrounding an unthreaded aperture of a component (e.g., the chassis). As a result, an effective connection between the fastener and the respective component (e.g., the chassis) may be established. For example, certain chassis may have unthreaded apertures configured to receive a shaft of a fastener without engaging the shaft, and a head of the fastener may be welded to the chassis to couple the fastener to the chassis. Because the illustrated fastener 20 includes a self-tapping first section 30, the fastener 20 may engage such an unthreaded aperture of the chassis, thereby coupling the fastener 20 to the chassis without welding. In the illustrated embodiment, the second section 36 does not include any self-tapping features (e.g., the second set of threads 38 are not self-tapping). However, in some embodiments, the second section 36 may include self-tapping feature(s). The self-tapping feature(s) may include a self-tapping tip, self-tapping threads (e.g., the second set of threads may be self-tapping), or a combination thereof. The self-tapping tip may include a drill-bit type tip (e.g., a self-drilling feature), a cutting tip, a tapered tip with cutting features, or any combination thereof. The self-tapping threads (e.g., of the first set of threads, of the second set of threads, or both) may include discontinuous threads (e.g., threads with intermediate breaks), variations in the geometry of the threads along the length of the threads, or any combination thereof. For example, the thread may periodically change in height, width, shape, angle, sharpness, or continuity along the length of the thread. The self-tapping threads may be thread-cutting (e.g., the threads remove material surrounding the aperture, thereby establishing a thread pattern within the component) and/or thread-forming (e.g., the threads may displace the material forming the aperture, thereby establishing a thread pattern within the component). The self-tapping feature(s) may facilitate self-tapping the fastener 20 into respective structure(s) (e.g., the chassis).
A first diameter D1 (e.g., a first inner diameter) corresponds to the diameter of the first section 51 at the nadir of the first set of threads 55 and may be constant throughout the shape of the first section 51. In the illustrated embodiment, the second section 56 has a rounded shape, and the second section 56 has a second set of threads 57 oriented in a second orientation, such that the second orientation is opposite of the first orientation (e.g., such that a second direction of the second threads is opposite a first direction of the first threads). Additionally, the second section 56 has a second diameter D2 (e.g., a second inner diameter) that corresponds to the diameter of the second section 56 at the nadir of the second set of threads 57. While the first diameter D1 is greater than the second diameter D2 in the illustrated embodiment, in certain embodiment the first diameter D1 and second diameter D2 may be equal. Additionally, a third diameter D3 (e.g., first outer diameter) corresponds to the diameter of the first section 51 at the peak of the first set of threads 55, and a fourth diameter D4 (e.g., second outer diameter) corresponds to the diameter of the section 56 at the peak of the second set of threads 57. In the current embodiment, the third diameter D3 is larger than the fourth diameter D4, but In other embodiments, the third diameter D3 may be equal to or smaller than the fourth diameter D4.
In some embodiments, a protective layer 59 (e.g., coating, plating, or the like) is disposed on an outer surface of the fastener. For example, the protective layer 59 may be disposed on the first section 51 (e.g., the first set of threads 55), the second section 56 (e.g., the second set of threads 57), or a combination thereof. In some embodiments, the protective layer may substantially reduce oxidation (e.g., rust) of the fastener 50. In some embodiments, the protective layer may substantially reduce stripping the threads. In certain embodiments, the protective layer may provide a lubricant for the threads to facilitate fastening or unfastening of the fastener 50. For example, the protective layer 59 may include zinc (e.g., applied to the fastener via an electroplating process).
In the current embodiment, the first section 62 and the second section 64 have a fifth diameter D5 (e.g., fifth outer diameter) corresponding to diameter of the peak of the first set of threads 66 and the second set of threads 68. However, in some embodiments, the diameter of the first section 62 and the diameter of the second section 64 may be different than one another (e.g., the diameter of the first section may be greater than the diameter of the second section). In the current embodiment, a first length L1 of the first section 62 is equal to a second length L2 of the second section 64, but in other embodiments the first length L1 may be different than the second length L2.
In some embodiments, the first section 62, the second section 64, or both may be self-tapping (e.g., include one or more features described herein to accomplish self-tapping), such that the thread(s) engage material surrounding respective unthreaded aperture(s) of component(s) (e.g., the chassis and/or the body panel). As a result an effective connection between the fastener 60 and the respective component(s) may be established. Additionally or alternatively, the first section 62, the second section 64, or both may not be self-tapping (e.g., not include any features described herein to accomplish self-tapping) and may pass through aperture(s) of component(s) (e.g., the chassis and/or the body panel), and respective nut(s) may be secured to the first set of threads 66, the second set of threads 68, or both by applying torque. In certain embodiments, a washer may be positioned between each nut and the respective component and may abut the respective component.
In some embodiments, the first section 62, the second section 64, or both may have a three-lobed shape (e.g., a curved geometric shape with a constant width and three lobes). The three-lobed shape may contribute to the self-tapping functionality of the first set of threads 66, second set of threads 68, or both (e.g., the three-lobed shape may reduce the friction between the set of threads and the respective component during thread forming). Additionally, the three-lobed shape of the first section 62, second section 64, or both may provide resistance to vibrational loosening. Additionally or alternatively, the first section 62, the second section 64, or both may have a circular shape.
In some embodiments, a protective layer 73 (e.g., coating, plating, or the like) is disposed on an outer surface of the fastener. For example, the protective layer 73 may be disposed on the first section 62 (e.g., the first set of threads 66), the second section 64 (e.g., the second set of threads 68), the third section 70, or a combination thereof. In some embodiments, the protective layer may substantially reduce oxidation (e.g., rust) of the fastener 60. In some embodiments, the protective layer may substantially reduce stripping the threads. In certain embodiments, the protective layer may provide a lubricant for the threads to facilitate fastening or unfastening of the fastener 60. For example, the protective layer 73 may include zinc (e.g., applied to the fastener via an electroplating process).
In the illustrated embodiment, the third section or the head of the third section is omitted. In addition, the first section 62 includes a recess 76 on the top portion 72. The recess 76 is configured to receive a tool to tighten the fastener 60′ within an aperture (e.g., simultaneously tighten the first section 62 within a first aperture and the second section within a second aperture). While the recess 76 has a crossed-slot shape in the illustrated embodiment, in other embodiments, the recess 76 may have another suitable shape such that a tool may be used to tighten the fastener 60′ within an aperture. Additionally, while the recess 76 is disposed on the top portion 72 in the illustrated embodiment, in other embodiments, the recess may be omitted on the top portion 72 and included on the bottom portion, or the recess 76 may be included on both the top portion 72 and the bottom portion.
While only certain features have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure.
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. 112(f).
This application claims priority from and the benefit of U.S. Provisional Application Ser. No. 63/040,697, entitled “A FASTENER INCLUDING OPPOSING THREADS”, filed Jun. 18, 2020, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63040697 | Jun 2020 | US |