Joining two or more parts together for use in an apparatus often requires some means of fastening the parts in either a static or dynamic configuration. Often two or more pieces of the same or different materials are required to be joined using techniques that, once performed, do not lend themselves to manual inspection or easy verification of proper installation. In many situations, these joints are often key elements of machinery that, should joint failure occur, would risk equipment destruction and/or bystander injury. An example non-verifiable joining process is the application of torque to a screw-type fastener.
Traditional practice for securing and marking a screw-type fastener to a set torque value requires an operator to utilize separate tools to secure the fastener to the correct torque value and then manually mark either the fastener head or an adjacent surface as a means to verify that the fastener was installed with the correct torque applied. Subsequent tools for torque application integrated a host of features among them: torque-sensing, fastener angle sensing, and data-recording.
Screw-type fasteners often secure high-risk joints that are reliant upon proper installation and maintenance of the fastener either due to restrained energy (potential or dynamic), or the potential for human injury. These joints are often described as “critical to safety” or “essential to safety” joints. These joints require evidence that the correct torque was applied at the time of installation, after repairs, and during subsequent maintenance inspections. Example high risk joints can include: those that secure components to the rotational side of computed tomography medical equipment where rotational acceleration can exceed 680 m s−2; joints that fasten X-ray tubes to portable X-ray systems (the system is suspended above a patient, joint failure risks injury); and automotive, military, and space applications with bolted joints that clamp parts of significant mass under loads creating a failure mode that could be catastrophic. Skilled practitioners will recognize many other instances too numerous to catalog here where similar joints occur.
Use of screw-type fasteners is but one example of a non-verifiable joint process. Those skilled in the art can recognize many analogous processes and tools engaged in the creation and formation of joints. For example, wire welding, requires keeping track of numerous process variables such as: wire feed rate, material temperature, gas envelope integrity, and current flow. In similar vein, a plasma or arc welder must keep track of variables unique to their joint formation process. Joints may also be formed by deformation of parts into each other, or through the formation and execution of complex geometries. Other example non-verifiable processes can include: spot welding, thermal melting, adhesive applications, etc. These processes all have in common a tool which engages with the joint compositional elements and which then must fasten the elements together in a way that forms a static or dynamic joint.
In order to maintain reliability and accountability for high-risk joints, traditional practice relies upon manufacturers, operators, inspectors, and repair technicians to provide, maintain, and update extensive documentation accompanying the associated machinery, including information relating to each high-risk joint. Thus, there is need to provide direct documentation and evidence on the joint components that manufacturing and maintenance requirements are satisfied. There is further need to automatically maintain associated records documenting joint history.
The term “non-verifiable process,” as used herein, refers to a process, or processes, wherein the compositional elements of a joint are engaged by a tool which then forms, or fastens, a static or dynamic joint. Exemplary non-limiting examples of “non-verifiable processes,” in addition to those provided above, can include any process wherein external validation is applied to the formed joint, thus certifying it usable for an intended purpose. A “process characteristic” can be any variable that a joint formation tool, a sub-component of a joint formation tool, or a separate instrument, measures to determine, and subsequently validate, that the steps of a non-verifiable process were performed and/or performed to within a specified range. A process characteristic may be an indicator of “joint quality;” which is a common usage of the term to represent the fitness of a joint for a specified purpose. A “joint formation tool” is a tool engaged in a non-verifiable process that may include a “fastener engaging component.” The “fastener engaging component” refers to the element of the tool directly engaged in the formation of a joint.
For example, in the case of the application of a screw-type fastener to a joint, the “fastener engagement component” would be the portion of a torque-applying joint formation tool engaged in manipulating a bolt and/or nut. In the case of a welding process, the term “fastener engaging component” may refer to a welding electrode, or similar component engaged in the joint formation. Practitioners in their respective arts will readily recognize those elements of a tool directly engaged in joint formation, thus creating a “fastener engagement component.”
As used herein the term “torque-applying tool” refers to any tool that may be used to apply torque to an object. By way of exemplary non-limiting examples, such tools include tools such as: levers, torque wrenches, air ratchets, ratchets, and tools with a similar objective. The term “torque” refers to not only the basic physical concept of rotational force, but also to values by which the strength of joints and screw-type fasteners are specified and evaluated. The terms “fastener” and “screw-type fastener” when paired with a torque-application tool are synonymous but not identical and encompass both singular and plural elements. In a broad sense, they refer to mechanical means of securing a joint wherein torque must be applied to at least one fastener element. The term “fastener element,” in general, describes a sub-component of a “fastener.” By way of exemplary non-limiting example, a bolt and nut may either be individually or simultaneously rotated through the application of torque in order to secure a joint. Alternatively, a “fastener” may merely be a singular rotating element with or without a pre-existing receptacle for the fastener (i.e., a self-tapping screw, a screw in a pre-tapped hole). Use of either term contemplates the other and does not limit to singular or multiple elements.
In the context of a plate welding process, the term “fastener element” might refer to either plate that might be joined, the electrode and/or fill material, etc. Thus the term “fastener element,” as noted above, is a context dependent generic descriptor meant to encompass the appropriate sub-elements of multiple joining techniques and processes. Further, in the welding context, the term “fastener,” rather than referring to the nut and bolt above, would refer to the materials engaged to form the joint (i.e., electrode, fill, wire, plates, etc.). In this context the joint-formation tool is used to meld the materials together into the joint (welder). Thus, a “fastener engaging component” would be a portion of a joint-formation tool directly engaged in the formation of the joint, “fastening” the materials together. Those skilled in the art, can thus readily recognize their respective joint-formation tools, fasteners, fastener elements, and fastener engaging components for their respective non-verifiable processes.
The term “labeling device” or “marking device” refers to a component of a joint-formation tool capable of applying marks to a fastener element, the joint itself, or an adjacent surface either singly, simultaneously, or iteratively. The terms “surface,” “adjacent surface,” or “medium” refer to those components and elements of a joint outside of the fastener that compose the rest of a joint secured by a fastener. The terms “label,” “mark,” and “identifying mark” are synonymous and contemplate mechanical, electrical, and digital means of applying information to a fastener or another element of a joint.
One embodiment is a method of labeling a fastener containing at least the steps of applying torque to a fastener element with a torque-applying tool; stopping the application of torque at a threshold level; sensing the applied torque; and, labeling the fastener element or adjacent surface with a labeling device integrated with the torque-applying tool.
Another embodiment contains a torque-application and marking tool configured to engage and rotate a fastener element; a labeling device attached to a torque-application tool configured to label at least one of a fastener element and/or adjacent surface when a desired torque is applied; and, a reader that records the marking and confirms the proper application of torque.
Another embodiment is demonstrated via a torque-application and marking tool that comprises a handle including a grip, a drive, a fastener-element engaging component, a torque control, and a labeling device. The torque control communicates with the fastener-element engaging component to set and/or sense that a fastener is at a desired torque value or within a desired range of values. The labeling device communicates with the torque control and applies a mark to the fastener element and/or an adjacent surface after verification the fastener is torqued to either the desired torque value or within the desired torque range. The mark indicates that the fastener was set at the desired torque value or within the desired torque range.
Other objects, advantages and novel features of the exemplary non-limiting embodiments presented herein will become apparent from the following detailed description when considered in conjunction with the accompanying drawings, in which like characters represent like parts throughout the drawings, wherein:
In the following, the present invention will be described in more detail with reference to illustrative non-limiting embodiments and to accompanying drawings. For purposes of explanation and not limitation, specific details are set forth in the illustrative embodiments, such as particular systems, structures and techniques, etc., in order to enable those skilled in the art to readily understand the present invention. In this context some embodiments demonstrate joint-formation tools for use with a screw-type fastening system. However, it will be apparent to those skilled in the art that the present the illustrative embodiments may be practiced in other embodiments without these specific details described herein. In some aspects, the embodiments presented herein relate to systems and methods of joint formation tools wherein fasteners or adjacent surfaces/media are marked. Some further embodiments are described herein with respect to electronically equipped torque wrenches. Practitioners skilled in the art, however, will readily recognize the applicability and scope of the illustrative embodiments to cover other areas where torque is applied to fasteners and other joint formation tools as above defined.
Exemplary non-limiting embodiments relate to a joint formation, non-verifiable joining process validation, and joint marking tool, and a method for use thereof. Further example embodiments relate to a torque application and marking tool and a method for use thereof.
Exemplary non-limiting embodiments of the inventive subject matter further relate to screw-type fastener marking devices and methods.
Example techniques of creating a mark can include etching information on an adjacent surface to the fastener, for example: with an integrated laser marking system, printing the information using inkjet techniques, or transferring information to an RFID tag that is attached to a fastener. A mark could further be made by modifying the surface of a fastener and/or adjacent surface leaving, for example, a raised profile, indentation and/or combinations thereof. A mark could also be made, for example, through the deposition of a wax, plastic, or similar, seal. A mark could also be made through the application of reflective material or material that changes light transmission or reflection properties with application of torque to the joint.
In the case of an RFID tag, the RFID tag can be a chip, integrated circuit, antenna, etc., and can contain passive or active elements. The RFID tag can contain a dataset composed of information such as, in the case of a screw-type fastener system, the applied torque, tool information, operator identification, and corresponding tolerances. The mark can also incorporate etching information via a barcode, such as a one-dimensional barcode or a two-dimensional barcode (also known colloquially as a “QR Code”). The barcodes can contain a dataset composed of information that can include values such as: the torque, tool information, torque-application device information, operator information, and corresponding tolerances. The barcode and/or RFID tag would remain with the fastener and/or adjacent surface. Alternatively, the integrated marking system can form an RFID tag or tag components into the fastener and/or into the adjacent system. One skilled in the art would recognize that a “mark” or “marking” is any indication present in singular or multiple forms that conveys information that the joint was formed to the appropriate specification and/or the fastener was torqued to a desired torque value or to a torque within a desired torque value range.
The labeling mechanism of any embodiment can be a device that writes to an RFID tag. The device may be an RFID reader that protrudes from the handle of a joint-formation tool or the RFID reader may be embedded within the handle. In most cases, an RFID tag is singulated by an RFID reader following a singulation protocol that identifies a tag with a specific identifier from a number of tags in a field and subsequently either transfers information to or reads information from the tag.
The fastener engaging component of any of the embodiments which encompass screw-type fasteners can be attached to a handle of a joint formation and marking tool similar to a socket attached to a wrench, or it may be embedded within the handle of the joint formation tool. The fastener engagement element of any embodiment can be a wrench, socket, torque wrench, drill, lug wrench, monkey wrench, pipe wrench, pliers, screwdriver, torque screwdriver, DC torque tool, transducerized torque tool, hydraulic torque wrench, clutch controlled torque tools, pulse controlled torque tools, etc.
In any embodiment, a joint formation and marking tool may further comprise a power source. The power source can be an external electrical, battery source, pneumatic (air) power source, hydraulic power source, DC power supply, AC power supply, etc. Energy can be applied through, manual, mechanical, or powered means. The joint formation tool and the labeler may use the same power source, or the joint formation tool and labeler may use separate power sources. Additionally, the joint formation tool may be manual and the labeler may use a power source.
A control of any embodiment can be in communication with the fastener engaging element to communicate and set the desired value or range of a desired process characteristic; in the case of a screw type fastener this can be a torque value or a desired torque range. A marking device can be in communication with the control and configured to mark or label a fastener after the fastener is at the desired process characteristic value, or within the desired process characteristic value range. The mark, for example, can indicate that a fastener was torqued to the desired torque or within a desired torque range. The driver of the joint formation tool can be manual or powered.
A unique identifier of any embodiment can be a radio-frequency identification (RFID) tag or barcode. The barcode may be a one-dimensional barcode type such as Code 128, EAN, UPC, Codabar, or Code 93. The barcode may be a two-dimensional (2D) Barcode Type such as QR CODE, DATAMATRIX CODE, PDF417, AZTEC, or GS1-Data Matrix.
A dataset may be stored in an information-storage location either internal or external to a joint formation tool. The dataset may be stored in a location such as a: computer, computer database, processor with a memory, external hard drive, internet-based storage, cellular device, cloud storage, solid state drive (SSD), network attached storage (NAS), storage area networks (SAN), etc. In certain embodiments the tool and/or reader communicates with the information-storage location in order to transmit the data to the tool and/or reader.
In at least one exemplary non-limiting embodiment, a mark can be scanned after the data is stored and a dataset of information corresponding to the fastener can be determined from scanning the mark. For example, in the context of a screw-type fastener, if something is wrong with the fastener, a mark can be scanned and a torque value of a fastener can be determined, the date the fastener was attached can be determined, and the operator associated with the installation of the fastener can be determined in addition to other pieces of information. The dataset may also include values related to the applied torque, tool information, operator identification and corresponding tolerances. The data may reside with the joint formation and marking device and can provide evidence that assembly requirements were satisfied.
Analog and digital measurement devices that may be used to determine the value of present torque of a fastener among others can include: a torque sensor, torque tester, inline torque tester, dial torque analyzer, mechanical torque loader, torque wrench loader, handheld digital torque gauge, impact wrench torque test system, hydraulic wrench torque tester, electric screwdriver torque tester, air tool and impact wrench digital torque tester, rotary torque transducer, square drive torque sensor, cap torque tester, rotating torque analyzer, etc.
In some embodiments, the joint formation and marking tool could employ laser etching as a method of marking a fastener and/or an adjacent surface. The laser etching can take place after the completion of joint formation. The joint formation and marking tool would hold a steady position for a period of time (approximately 1 second—a minute or more), while the etching of the fastener and/or adjacent surface takes place.
In certain embodiments, the joint formation and marking tool could transmit data to an
RFID tag attached to the fastener as a method of marking the fastener and/or labeling the adjacent surface. The data transmission could take place after completion of fastener rotation. The tool would not need to hold a steady position for the period of time while the writing takes place (approximately 1s).
In embodiments where an RFID tag is used, the RFID tag can be attached to the adjacent surface, or the RFID tag can be attached to the fastener. The RFID tag can be passive, active, or battery-assisted passive. The RFID tag may be read-only or read/write.
Readers for both RFID tags and barcodes may be passive reader active tag (PRAT) readers, active reader passive tag (ARPT) readers, active reader active tag (ARAT) readers, long range barcode scanners, laser barcode scanners, pocket barcode scanners, 2d barcode scanners, 2d wireless barcode scanners, pen barcode scanner, mobile computer, pen-type readers, laser scanners, cd readers (LED scanners), camera-based readers, video camera readers, large field-of-view readers, omnidirectional barcode scanners, cell phone cameras, smartphones, automatic readers, etc.
The dataset of any embodiment might be transmitted via hardwire, Bluetooth, radio frequencies, ultrahigh frequency, high frequency, low frequency, etc. Information in the dataset stored under the unique identifier can amongst others include: torque value; angle; operator ID; the date that the fastener was installed, repaired, modified, or inspected; the time the fastener was installed, repaired, modified, or inspected; information on the fastener; tool information; operator information; corresponding tolerances, etc.
It is understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the inventive subject matter without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the inventive subject matter, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of ordinary skill in the art upon reviewing the above description. The scope of the inventive subject matter should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This written description uses examples to disclose several embodiments of the inventive subject matter and also to enable any person of ordinary skill in the art to practice the embodiments of the inventive subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the inventive subject matter is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the inventive subject matter are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, the words “including,” “having,” “comprising,” and all derivations thereof should be construed as open-ended transitional phrases and, therefore, use of said phrases herein does not exclude the presence of additional elements or steps relative to those listed in a claim or described in the specification
Since certain changes may be made in the above-described systems and methods, without departing from the spirit and scope of the inventive subject matter herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the inventive subject matter.