Fastener member for affixation to a structure in an orthopedic device and method for securing the same

Information

  • Patent Grant
  • 10245170
  • Patent Number
    10,245,170
  • Date Filed
    Wednesday, October 12, 2016
    7 years ago
  • Date Issued
    Tuesday, April 2, 2019
    5 years ago
Abstract
A fastener member for mechanical affixation to a structure includes a base having first and second sides, a plurality of fastening elements integrally formed and extending from a first side of the base, and at least one affixation element extending from the second side of the base and arranged to mechanically affix to an attachment opening of a structure. A system includes a structure and a fastener member for mechanical affixation to the structure. A method includes affixing the fastener member to a structure.
Description
TECHNICAL FIELD

The present disclosure relates to a fastener member for mechanical affixation to a structure, and more particularly to a fastener member including a plurality of fastener elements extending from a side and affixation means for selectively and removably engaging a structure, such as a molded article or frame element in an orthopedic device.


BACKGROUND

In orthopedic devices, textile and/or foam liners are typically attached to frame elements of the device by using hook and loop fastener systems. The liners are provided in part to protect the user from the frame elements which may be rigid or semi-rigid, whereas the liners provide a comfortable interface between the user and the frame element.


It is common practice to use adhesives, ultrasonic welding, or other means to attach pieces of hook material to the frame element, and the liner includes or incorporates hook engageable material or pieces (i.e., loop material) to attach to the hook material pieces on the frame element. It is often found, however, that the shear forces applied to the adhesives on the hook material pieces, coupled with the temperature fluctuations and humidity inherent with orthopedic devices, causes the hook material pieces to slide and migrate over a period of use. This causes problems for the user, as the liner now improperly covers the frame elements, and pressure points may emerge at the edges of the frame element.


The hook material pieces may likewise be used for engaging a strap loop which retains the orthopedic device on the anatomy of the user. Again, adhesive applied hook material pieces tend to migrate which displaces the location of the strap and may lead to a deterioration of the efficacy in securing the device on the user.


In the past, injection molded hook integrally molded onto the frame element has been used to prevent the hook elements sliding and coming lose from the frame element. This is done in such a manner that an insert for the hook elements is placed into an injection molding tool for the frame element and an integrally-formed field of hooks is created during molding or manufacturing of the frame element so the hook is molded directly into the plastic of the frame element. Obviously, this method eliminates the need for adhesively applying the aforementioned hook material pieces and reduces the step of later applying hook material pieces later in the fabrication of an orthopedic device.


While injection molding the hook elements directly onto frame element is effective, it suffers from the drawback that many orthopedic devices do not lend themselves to including integrally molded hook elements. Knee brace shells are commonly post formed onto a user's leg mold after the frame elements are formed by injection molding rendered in a flat configuration. Because the frame elements may be subsequently contoured after the frame element itself is formed, integrally molded hook elements may become damaged during the post-forming and customization process. Due to the inherent differences in shape of each user, the integrally molded hook elements may be at a less favorable location after the frame element has been formed. Known methods for integrally molding hook elements lack flexibility for later modification in location and limit the degree by which frame elements may be customized for an individual user.


SUMMARY

Embodiments according to the disclosure are directed to a fastener member and method for using the same for mechanical affixation to a molded article or frame element, and particularly to a fastener member including a plurality of fastener elements extending from a side and means for selectively and removably engaging a molded article or frame element.


The fastener member embodiments are arranged to mechanically and selectively engage a frame element at post-formation of the frame element. By mechanical engagement, the arrangement of the fastener element obviates the need to adhesively secure hook material pieces to the frame element or integrally form hook elements at the formation of the frame element. By selective engagement, a clinician can place the fastener at many locations suitable for a desired application, such as securing to a liner or engaging a strap. From the arrangement of the fastener element, migration of the hook element is eliminated and damage of hook elements during post-forming of the frame elements is prevented.


The fastener member is arranged for having an affixation element that is releasably affixed to a structure, such that the affixation element can be quickly fixed to the structure without machining, molding or applying adhesive, and can be easily detached from the structure without being damaged.


The fastener member embodiments may retrofit on existing orthopedic devices having frame elements defining suitable openings capable of interengaging various means for affixing the fastener members to the frame element to connect brace components, such as liners, padding, and straps, to the frame element.


A fastener member for mechanical affixation to a structure includes a base having first and second sides, a plurality of fastening elements integrally formed and extending from a first side of the base, and at least one affixation element extending from the second side of the base and arranged to mechanically affix to an attachment opening of a structure.


The at least one affixation element includes a stem protruding from the base and a head extending from the stem. The head may have a length greater than a width of the stem. A plurality of fastening elements may include first and second rows of hook elements, and the hooks of each of the first and second rows extend in opposing directions, respectively.


According to a variation, the base may have a substantially flat back side. The base may be flexible and arranged to accommodate a shape of the structure upon which the fastener member is affixed.


The at least one affixation element may define first and second resiliently flexible side legs spaced apart by gaps on opposed sides of a center leg. A head may form flange segments extending from both of the side legs and have a mirror image of one another. A periphery of the base may be elongate and have rounded edges.


The at least one affixation element may include first and second affixation elements protruding from the base. Each of the first and second affixation elements may define a resiliently flexible side leg carrying a head having a sloped face and extending to a flange. The sloped faces may be arranged in opposed directions relative to the length of the base.


A system has a frame element and a fastener member for mechanical affixation to the frame element. The fastener member is arranged to mechanically affix to an attachment opening of the frame element. The frame element may include an opening through which the at least one affixation element extends. The at least one affixation element has a head defining a dimension extending longer than a width of the opening. The frame element may include at least one rib protruding from a peripheral wall defining the opening. The at least one affixation element is arranged secured against the peripheral wall. A thickness of the frame element at the opening is generally the same as a length of a stem extending from the base and carrying the head. The system may use any of the fastener members and variations of the frame element described herein.


A method for affixing a fastener member to a structure includes providing an attachment opening on the structure, attaching the fastener member to the structure. The fastener member includes a base having first and second sides, a plurality of fastening elements extending from a first side of the base, and an affixation element extending from the second side of the base. The method further includes affixing the affixation element to the structure about the attachment opening.


A thickness of the frame element at the opening is generally the same as a length of a stem extending from the base and carrying the head. The head may have a length greater than a width of the stem. The method may include using any of the fastener elements described herein and attaching the same to the attachment opening.


In another embodiment, the fastener member may be permanently secured to a structure. According to one variation, the fastener member is secured within a recess formed by a structure, and a fastener retains the fastener member within the recess. The recess can prevent rotation or shifting of the fastener member relative to the structure, whereas the fastener keeps the fastener member from pulling away from the structure.


The fastener member may be formed from a material different from the structure, either more rigid or more flexible. For example, the structure may be constructed from carbon fiber or aluminum, and may be more or less rigid than the fastener member. While it may not be feasible to construct the fastener member from certain types of structure, but it may be desirable to have a strong fastener member rather than conventional hook material in known hook and loop systems and this is achieved by providing an injected molded fastener member that can be selectively secured to a structure.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood regarding the following description, appended claims, and accompanying drawings.



FIG. 1 is a perspective view showing a first embodiment of a fastener member.



FIG. 2 is a schematic sectional rear view showing affixation of the fastener member of FIG. 1 onto a frame element.



FIG. 3 is a schematic sectional front view showing affixation of the fastener member of FIG. 1 onto a frame element.



FIG. 4 is an exemplary perspective view of a prior art fastener element configuration.



FIG. 5 is a perspective view showing a second embodiment of a fastener member.



FIG. 6 is a schematic sectional rear view showing affixation of the fastener member of FIG. 5 onto a frame element.



FIG. 7 is a schematic sectional front view showing affixation of the fastener member of FIG. 5 onto a frame element.



FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.



FIG. 9 is a schematic view of FIG. 8 without the fastener member.



FIG. 10 is a perspective view showing a third embodiment of a fastener member.



FIG. 11 is a schematic sectional rear view showing affixation of the fastener member of FIG. 10 onto a frame element.



FIG. 12 is a schematic sectional front view showing affixation of the fastener member of FIG. 10 onto a frame element.



FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12.



FIG. 14 is a schematic view showing a configuration of a set of fastener members securing a strap to a frame element.



FIG. 15 is a schematic view showing the set of fastener members securing to a strap as in FIG. 14 on a variation of a frame element.



FIG. 16 is a schematic view showing a fastener member secured to a frame element.





The drawing figures are not necessarily drawn to scale, but instead are drawn to provide a better understanding of the components, and are not intended to be limiting in scope, but rather to provide exemplary illustrations. The figures illustrate exemplary embodiments of a frame element in an orthopedic device, and in no way limit the structures or configurations of a fastener member and structure for receiving the fastener member according to the present disclosure.


DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

Under a first embodiment according to the disclosure, FIG. 1 depicts a fastener member 10 having a base 11 carrying a plurality of fastener elements 22 along a front side 12. A backside 14 of the base 11 includes an affixation element 16 arranged for securing to a structure. The affixation element 16 has a stem 18 defining a first end extending perpendicularly from the base 11 and a head 20 on a second end of the stem 18.


According to an embodiment, the backside 14 has a substantially flat contour. The base 11 may be substantially rigid or may be flexible to accommodate a shape of a frame member.


While the stem 18 is preferably cylindrical in shape, the head 20 preferably is not round and extends in length greater than a width or diameter of the stem 18. The head may have a variety of different shapes. The head 20 is a non-round component extending from opposed sides of the stem 18. Alternatively, the head has a diameter greater than the diameter of the stem.


The fastener member may be made from various materials. The body may be made of polymeric materials, such as polyvinyl chloride, polypropylene, or other engineering plastics. The base, affixation element, and the fastener elements may be formed as a unitary structure, or alternatively the affixation or the fastener elements may be secured to the base. The fastener member may be trimmable so the base periphery can be modified according to particular usage or a location along the frame element.


The fastener member may be rendered or formed in a substantially flexible condition or may be rendered or formed into a rigid condition, depending on the intended application and desired durability of the fastener member.


The fastener elements may be arranged in the prior art example in FIG. 4. The fastener elements 22 are a plurality of hooks 32 arranged in alternating rows and integrally formed with the base 12 from the backside 14. The fastener element may be configured in a variety of ways, such as various shapes, materials, arrangements, numbers of elements; the hook elements may comprise structure capable of separable attaching to a loop material.


While the fastener member 10 is depicted as having a generally square or rectangular profile, the base periphery 26 may take on a variety of shapes and sizes. The base periphery is not limited to the shape and size depicted, and may be suitably adapted depending on the type of structure it is affixed to and to which the hook elements should engage. The fastener member is not limited to a single affixation element, but may include multiple affixation elements depending on the size and shape of the fastener element and the structure upon which it is affixed.


While affixation elements are described in combination with this embodiment, the fastener members described may be attached to a structure in a variety of ways. The affixation element may be removed or provided in combination with ultrasonic welding, riveting, insert molding, or an adhesive to assure that the fastener member is securely retained on the structure. The structure, such as the frame element, may include a recessed portion into which the fastener member is secured so that either the affixation element or the base other than the fastener elements protrude from a surface of the structure to minimize exposure of the fastener member and contribute to a streamlined configuration.


In reference to FIGS. 2 and 3, the fastener member 10 is shown as attached to a structure in a molded article or frame element 24 in an orthopedic device. An example of a frame element 24 is found in U.S. Pat. No. 7,198,610, granted on Apr. 3, 2007, and incorporated by reference. Examples of padding, spacer elements, straps and other components capable of securing to the fastener elements may also be found in U.S. Pat. No. 7,198,610.


The frame element 24 has a plurality of attachment openings 28 and corresponding peripheral walls 30 formed from the structure and delimiting the openings. In the example in FIGS. 2 and 3, the attachment openings take on the shape of elongate slots formed from the frame element. The width (W) of the attachment openings is smaller than the length of the head of the fastener member and generally matches the diameter (D) or width of the stem 18, although the length of the attachment openings may be significantly longer than the length of the head.



FIG. 2 shows how the width and length of the attachment openings is defined, whereas FIG. 5 shows how the width (W), length (l) and height (h) of the affixation element may be defined however the height of the stem in the fastener member 10 is defined between its first and second ends. FIG. 5 also shows how the length (L) of the base can be defined. FIG. 8 shows how the thickness of the frame element may be defined.


As shown, the fastener member 10 is secured to the frame element 24 by securing the head 20 against a first surface 34 of the frame element beyond the peripheral walls 30 of the attachment openings 28. The backside 14 of the fastener member 10 is arranged adjacent to a second surface 36 of the frame element 24 due to the stem 18 having a height generally corresponding to the thickness of the walls 30 to assure that the backside 14 of the fastener member 10 is snugly secured against the second surface 36 of the frame element 24. The front side 12 of the fastener member 10 is arranged to readily expose the fastener elements 22.


When selecting where to install the fastener member 10, the clinician may choose among any of the openings adapted to receive the stem. The head is inserted through the opening such that the length of the head is generally parallel with the length of the opening. Once the correct position along the opening is selected, the clinician rotates the fastener member such that the length of the head is generally perpendicular to the length of the openings.


The fastener member may be adapted to slide relative to the walls of the opening, or alternatively snugly fit against the frame element without movement once placed into the desired location. Alternatively, the frame element may include recesses along either of the first or second frame surfaces at predetermined locations to receive the head once rotated in a secure placement.


In referring to the embodiment of FIG. 5, another fastener member 110 is provided having a variation of an affixation element 116. The fastener member 110 has a base 111 carrying a plurality of fastener elements 122 along a front side 112. A backside 114 of the base 111 includes an affixation element 116 arranged for securing to a structure.


The affixation element 116 has a pair of resiliently flexible side legs 118 spaced apart by gaps 134 on opposed sides of a center leg 132. The head 120 extends from both of the side legs 118 and generally take on a mirror image of each other. Each head 120 includes a flange 130 that protrudes from the stem 118. The periphery of the head 120 has sloped edges 121 outside of the portion adjacent the center leg 132.


As shown in FIGS. 5 and 7, the base periphery 126 is generally elongate and has rounded edges. According to this embodiment, the fastener member is adapted to provide greater surface in a length direction of the fastener member for exposing the fastener elements 122 from the front side 112.


When installed on the frame element 124, the fastener member 110 is secured to the frame element 124 by securing the flanges 130 of the heads 120 within an attachment opening 128 so as not to extend beyond a surface of the frame element. The head 120 of the affixation element 116 generally corresponds in shape to the periphery of the attachment opening 128. The backside 114 of the fastener member 110 is arranged adjacent to a second surface 146 of the frame element 124 due to the side legs 118 snugly securing against the frame element 124. The front side 112 of the fastener member 110 is arranged to readily expose the fastener elements 122.


As shown in FIG. 8, the height of the affixation element 116 corresponds to the thickness 142 of the frame element 124. As better depicted in FIG. 9, the frame element 124 defines ribs 138A, 138B defined between upper and lower wall portions defining the attachment opening 128. When the affixation element 116 is inserted into the attachment opening 128 with some degree of force, the sloped edges 121 of the head 120 slide against the ribs 138A, 138B and the side legs 118 resiliently bend toward the center leg 132. Once the flanges 130 pass past the ribs 138A, 138B, the flanges 130 return to their initial state such that the flanges 130 extend over the ribs 138A, 138B to lock or snap-fit the fastener member relative to the frame element 124. Further movement of the affixation element 116 is prevented since the height of the affixation element 116 generally corresponds to the thickness 142 of the frame element 124.


In referring to FIG. 10, another embodiment of a fastener member 210 has opposed affixation elements 216A, 216B protruding from a base 211 carrying a plurality of fastener elements 222 along a front side 212. Each of the affixation elements 216A, 216B defines a resilient flexible side leg 218 carrying a head 220 having a sloped face 221 and extending to a flange 230. The sloped faces 221 are arranged in opposed directions of the length of the base 211. As with the other fastener members, the base has a periphery 226 that is both adaptable in shape and size.


According the embodiment of FIG. 10 and depicted in FIGS. 11-13, the fastener member 210 is secured against the wall portions 236 of a pair of attachment openings 228A, 228B. The side legs 218 are arranged to flexibly extend into the attachment openings 228A, 228B along the wall portions 236 and snap-fit against the wall portions such that the flanges 230 extend over a surface of the frame element and the side legs 216 are resiliently urged against the wall portions 230.


As exemplified in FIG. 14, a set of fastener members 318, 320 may be arranged on a frame element 312 in a variety of configurations, and a strut 314 may be connected to other brace components. In this example, the frame element 312 defines a plurality of horizontally oriented attachment openings 324, 326, 328 on opposed sides, and received the fastener members 320, 322. A strap 316 has opposed end portions that engage the fastener members 318, 320.


The fastener members 320, 322 may be arranged under the embodiments described. As depicted in FIG. 14, the fastener members 318, 320 that generally correspond to the fastener member 10. At least h the fastener member 318 includes an affixation element 322 adapted to slide relative to the frame element, although delimited by ends of the attachment opening thereby permitting some adjustability while when a user wears the brace. A pad having some frictional component may be on the strap which prevents migration of the strap despite the ability of the fastener members to travel. Tension of the strap on the user may likewise limit movement of the fastener member. A clinician can select among one of the attachment openings 324, 326, 328 arranged according to height of the frame element 312.



FIG. 14 exemplifies how a recess 338 may be formed on a structure, as in the frame element 314, and corresponds in shape with the fastener member 320 to retain the fastener member 320 in place, and also to minimize or eliminate clearance of the base other than the fastener elements from a surface of the frame element. The fastener member 320 may be attached to the frame element 314 in any manner described.


As shown, the fastener members 318, 320 are placed on opposed surfaces of the frame element. The fastener members are not limited to this arrangement, and may be likewise placed along the same surface. Multiple fastener members may be attached along the same attachment opening to lengthen the area that includes fastener elements if it is found the given length of an individual fastener element is insufficient. The fastener members may be supplemented with an adhesive besides the mechanical coupling, and may also be in combination with adhesively applied hook material pieces in a retrofit condition.


In referring to FIG. 15, an alternative frame element 314 defines a plurality of vertically oriented attachment openings 330, 332 arranged at opposed sides of the frame element 314. The frame element is not limited to the arrangement of vertically or horizontally oriented attachment openings on opposed sides of the frame element. Attachment openings can be in any orientation and at any location on the frame element to receive a fastener member.


The frame element 314 may include recesses 334 into which an affixation element 322 may be located. The recesses 334 may be arranged in a manner which permits the affixation element 322 and hence the corresponding fastener member 322 may rotate or linearly travel within a certain range. The frame element 314 may include stop protrusions 336 which likewise limit travel of the fastener member by stopping rotational and linear movement of the fastener member.


The frame element 314 allows for the strap 316 to adjust in height, and rotate according to movement of the user. In a knee brace, the strap may be allowed to slide upwards and downwards while the leg moves between extension and flexion, especially if the brace includes some frictional contact with the user such as a friction component on a liner. The motion of the fastener members may reduce shear forces exerted on the skin of the user.


Despite the embodiments described, attachment of the fastener member on a frame element may be arranged so the fastener member is fixed in place, or is movable as discussed above with the embodiments of FIGS. 14 and 15.


In another embodiment exemplified by FIG. 16, the fastener member 12 may be permanently secured to a structure 352. According to one variation, the fastener member 12 is secured within a recess 354 formed by the structure 352, and a fastener 350, such as a rivet, retains the fastener member within the recess 354. An opening 356 may be provided within the structure to accommodate the fastener 350. The fastener member 12 may be sized and configured to snugly fit within the recess 354. The recess 354 can prevent rotation or shifting of the fastener member 12 relative to the structure 352, whereas the fastener 350 keeps the fastener member 12 from pulling away from the structure 352. Alternatively, the fastener member 12 may be secured to the structure 352 by an adhesive.


The fastener member may be formed from a material different from the structure, either more rigid, more flexible or the same. For example, the structure may be constructed from carbon fiber or aluminum and is essentially more rigid than the fastener member. It may not be feasible to construct the fastener member from the structure, but it may be desirable to have a strong fastener member rather than conventional hook material in known hook and loop systems where the hooks are constructed from nylon or similar material substantially dissimilar from the structure.


The fastener members may be configured to retrofit existing frame elements in existing orthopedic devices having frame elements defining suitable openings capable of interengaging various means for affixing the fastener members to the frame element. The frame element can receive another type of orthopedic device feature, for example liners, padding, and straps, carrying suitable loop element or other material or structure capable of securely engaging with fastener elements on the fastener member.


While the structure is described with an orthopedic device, the structure may comprise any form of structure for any type of device requiring a fastener member under the embodiments described.


The skilled artisan will recognize the interchangeability of various features from different embodiments. Besides the variations described, other known equivalents for each feature can be mixed and matched by one of ordinary skill in this art to construct fastener members and structural element for attachment of the fastener members under principles of the present disclosure.


Although the embodiments have been disclosed in certain exemplary embodiments and examples, it therefore will be understood by those skilled in the art that the present invention extends beyond the disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents. It is intended that the scope of the present invention disclosed should not be limited by the disclosed embodiments described above.

Claims
  • 1. An orthopedic device comprising a frame element, a brace component, and a fastener member for mechanical affixation of the brace component to the frame element, the fastener member including: a base having first and second sides;a plurality of hook fastening elements extending from a first side of the base; andan affixation element extending from the second side of the base and arranged to mechanically affix to an attachment opening of the frame element, and selectively positioned along a plurality of locations of the attachment opening;wherein the affixation element has a head defining a length dimension extending longer than a width of the attachment opening, and a stem carrying the head which passes through the attachment opening;wherein the attachment opening is formed as an elongate slot such that the fastener member slides relative to peripheral walls surrounding the elongate slot along a length of the elongate slot;wherein the fastener member is secured to the frame element in a secured configuration by rotating the fastener member such that the head of the fastener member is pressed against a first surface of the frame element beyond the peripheral walls of the attachment opening, and such that the second side of the fastener member is pressed against a second surface of the frame element;wherein the fastener member is readjustable relative to the frame element from the secured configuration by rotating the fastener member so a length dimension of the head is parallel to a length of the attachment opening and relocating the fastener member along the plurality of locations of the attachment opening; andwherein the brace component is arranged to connect to the frame element by the fastener member and includes loop material for interengaging the plurality of hook fastening elements of the fastener member, and is selected form the group consisting of a strap and padding.
  • 2. The orthopedic device of claim 1, wherein the fastener member is arranged to rotate or linearly travel within a certain range of a length of the attachment opening.
  • 3. The orthopedic device of claim 1, wherein an entirety of the base of the fastener member is arranged directly adjacent to the second surface of the frame element due to the stem carrying the head of the affixation element having a height corresponding to and the same as a thickness of the peripheral walls to assure that the second side of the fastener member is snugly secured without movement directly against the second surface of the frame element.
  • 4. The orthopedic device of claim 1, wherein the frame element includes a recess formed about the peripheral wall defining the attachment opening, the affixation element arranged to be secured against and within the recess.
  • 5. The orthopedic device of claim 4, wherein the recess corresponds in shape to the fastener member to retain the fastener member in place.
  • 6. The orthopedic device of claim 5, wherein the recess is arranged in size to eliminate clearance of the head from the first surface of the frame element.
  • 7. The orthopedic device of claim 1, wherein the fastener member is formed in a substantially flexible condition.
  • 8. The orthopedic device of claim 1, wherein the length of the attachment opening is substantially longer than a length dimension of the head.
  • 9. The orthopedic device of claim 1, wherein the fastener member is made from a polymeric material.
  • 10. The orthopedic device of claim 1, wherein the hook fastener elements are secured to the base.
US Referenced Citations (292)
Number Name Date Kind
157883 Spruce Dec 1874 A
665985 White Jan 1901 A
667768 Poy Feb 1901 A
676810 Young Jun 1901 A
718018 Northrop Jan 1903 A
777585 Beatty Dec 1904 A
782460 Northrop Feb 1905 A
810537 Hopkins Jan 1906 A
937478 Sims Oct 1909 A
944673 Harrison Dec 1909 A
1148444 Crawford Jul 1915 A
1153334 Oswald Sep 1915 A
1227700 Tucker May 1917 A
1328541 Palmer Jan 1920 A
1510408 Lychou Sep 1924 A
1622211 Sheehan Mar 1927 A
2032923 Eldridge Mar 1936 A
2179903 Spears Nov 1939 A
2467907 Peckham Apr 1949 A
2573866 Murphy et al. Nov 1951 A
2717841 Biefeld et al. Sep 1955 A
2935065 Homier et al. May 1960 A
3031730 Morin May 1962 A
3046981 Biggs, Jr. et al. Jul 1962 A
3089486 Pike May 1963 A
3266113 Flanagan, Jr. Aug 1966 A
3463147 Stubbs Aug 1969 A
3514313 Martel et al. May 1970 A
3520765 Bateman Jul 1970 A
3528412 McDavid Sep 1970 A
3561436 Gaylord, Jr. Feb 1971 A
3581741 Rosman et al. Jun 1971 A
3594863 Erb Jul 1971 A
3594865 Erb Jul 1971 A
3742557 Francois Jul 1973 A
3743147 Wilczynski Jul 1973 A
3752619 Menzin et al. Aug 1973 A
3758657 Menzin et al. Sep 1973 A
3789842 Froimson Feb 1974 A
3808648 Billarant et al. May 1974 A
3851357 Ribich et al. Dec 1974 A
3877426 Nirschl Apr 1975 A
3916077 Damrau Oct 1975 A
3927881 Lemelson et al. Dec 1975 A
3945046 Stromgren Mar 1976 A
3955565 Johnson, Jr. May 1976 A
4193395 Gruber Mar 1980 A
4204532 Lind et al. May 1980 A
4240414 Theisler Dec 1980 A
4269179 Burton et al. May 1981 A
4269181 Delannoy May 1981 A
4275716 Scott, Jr. Jun 1981 A
4280489 Johnson, Jr. Jul 1981 A
4291072 Barrett et al. Sep 1981 A
4296744 Palumbo Oct 1981 A
4304560 Greenwood Dec 1981 A
4336279 Metzger Jun 1982 A
4372298 Lerman Feb 1983 A
4381768 Erichsen et al. May 1983 A
4386723 Mule Jun 1983 A
4396012 Cobiski Aug 1983 A
4470857 Casalou Sep 1984 A
4472461 Johnson Sep 1984 A
4506661 Foster Mar 1985 A
4528440 Ishihara Jul 1985 A
4554913 Womack et al. Nov 1985 A
4572170 Cronk et al. Feb 1986 A
4617214 Billarant Oct 1986 A
4632098 Grundei et al. Dec 1986 A
4677713 Copp Jul 1987 A
4693921 Billarant et al. Sep 1987 A
D292529 Saare Oct 1987 S
4768500 Mason et al. Sep 1988 A
4775310 Fischer Oct 1988 A
D298568 Womack et al. Nov 1988 S
4782605 Chapnick Nov 1988 A
4791916 Paez Dec 1988 A
4794028 Fischer Dec 1988 A
4801138 Airy et al. Jan 1989 A
4802939 Billarant et al. Feb 1989 A
4805606 McDavid, III Feb 1989 A
4854308 Drillo Aug 1989 A
4856501 Castillo et al. Aug 1989 A
4856502 Ersfeld et al. Aug 1989 A
4872243 Fischer Oct 1989 A
4922929 Dejournett May 1990 A
4933035 Billarant et al. Jun 1990 A
4953543 Grim et al. Sep 1990 A
4961544 Bidoia Oct 1990 A
4966133 Kausek Oct 1990 A
4989593 Campagna et al. Feb 1991 A
4991574 Pocknell Feb 1991 A
4991640 Verkindt et al. Feb 1991 A
5016621 Bender May 1991 A
5018514 Grood et al. May 1991 A
5020196 Panach et al. Jun 1991 A
5022109 Pekar Jun 1991 A
5063916 France et al. Nov 1991 A
5067772 Koa Nov 1991 A
5077870 Melbye et al. Jan 1992 A
5085210 Smith, III Feb 1992 A
5112296 Beard et al. May 1992 A
5154682 Kellerman Oct 1992 A
5157813 Carroll Oct 1992 A
5181331 Berger Jan 1993 A
5242379 Harris et al. Sep 1993 A
5267951 Ishii Dec 1993 A
5277697 France et al. Jan 1994 A
5277698 Taylor Jan 1994 A
5288287 Castillo et al. Feb 1994 A
5302169 Taylor Apr 1994 A
5314455 Johnson, Jr. et al. May 1994 A
5316547 Gildersleeve May 1994 A
5322729 Heeter et al. Jun 1994 A
5334135 Grim et al. Aug 1994 A
5344135 Isobe et al. Sep 1994 A
5368549 McVicker Nov 1994 A
5383845 Nebolon Jan 1995 A
5397296 Sydor et al. Mar 1995 A
5415625 Cassford et al. May 1995 A
5431623 Rice Jul 1995 A
5437619 Malewicz et al. Aug 1995 A
5445602 Grim et al. Aug 1995 A
5449341 Harris Sep 1995 A
5458565 Tillinghast, III et al. Oct 1995 A
5468219 Crippen Nov 1995 A
5472413 Detty Dec 1995 A
5474524 Carey Dec 1995 A
5497513 Arabeyre et al. Mar 1996 A
5500268 Billarant Mar 1996 A
5512039 White Apr 1996 A
5513658 Goseki May 1996 A
5514081 Mann May 1996 A
5527269 Reithofer Jun 1996 A
5540982 Scholz et al. Jul 1996 A
5542911 Cassford et al. Aug 1996 A
5562605 Taylor Oct 1996 A
5599288 Shirley et al. Feb 1997 A
5614045 Billarant Mar 1997 A
5635201 Fabo Jun 1997 A
5638588 Jungkind Jun 1997 A
5654070 Billarant Aug 1997 A
5656226 McVicker Aug 1997 A
5665449 Billarant Sep 1997 A
5695452 Grim et al. Dec 1997 A
5713837 Grim et al. Feb 1998 A
D392877 Eguchi Mar 1998 S
5737854 Sussmann Apr 1998 A
5759167 Shields, Jr. et al. Jun 1998 A
5769808 Matthijs et al. Jun 1998 A
5774902 Gehse Jul 1998 A
5795640 Billarant Aug 1998 A
5823981 Grim et al. Oct 1998 A
5840398 Billarant Nov 1998 A
5857988 Shirley Jan 1999 A
5857989 Smith, III Jan 1999 A
5865776 Springs Feb 1999 A
5865777 Detty Feb 1999 A
5865782 Fareed Feb 1999 A
5873848 Fulkerson Feb 1999 A
5891061 Kaiser Apr 1999 A
5900303 Billarant May 1999 A
5916187 Brill Jun 1999 A
5948707 Crawley et al. Sep 1999 A
5971946 Quinn Oct 1999 A
6010474 Wycoki Jan 2000 A
6021780 Darby Feb 2000 A
6022617 Calkins Feb 2000 A
6024712 Iglesias et al. Feb 2000 A
6063048 Bodenschatz et al. May 2000 A
6110138 Shirley Aug 2000 A
6111138 Van Wijck et al. Aug 2000 A
6142965 Mathewson Nov 2000 A
6152893 Pigg et al. Nov 2000 A
6159583 Calkins Dec 2000 A
6163939 Lacey et al. Dec 2000 A
6187247 Buzzell et al. Feb 2001 B1
6250651 Reuss et al. Jun 2001 B1
6254554 Turtzo Jul 2001 B1
6267741 Lerman Jul 2001 B1
RE37338 McVicker Aug 2001 E
6287268 Gilmour Sep 2001 B1
6289558 Hammerslag Sep 2001 B1
6360404 Mudge et al. Mar 2002 B1
6368295 Lerman Apr 2002 B1
6402713 Doyle Jun 2002 B1
6405731 Chiang Jun 2002 B1
6413232 Townsend et al. Jul 2002 B1
6416074 Maravetz et al. Jul 2002 B1
6451239 Wilson Sep 2002 B1
6461318 Freeman et al. Oct 2002 B2
6485776 Janusson et al. Nov 2002 B2
6520926 Hall Feb 2003 B2
6540703 Lerman Apr 2003 B1
6540709 Smits Apr 2003 B1
6543158 Dieckhaus Apr 2003 B2
D477409 Mills et al. Jul 2003 S
6592538 Hotchkiss et al. Jul 2003 B1
6592539 Einarsson et al. Jul 2003 B1
6596371 Billarant et al. Jul 2003 B1
6598250 Pekar Jul 2003 B1
6656142 Lee Dec 2003 B1
6666894 Perkins et al. Dec 2003 B2
6689080 Castillo Feb 2004 B2
6726641 Chiang et al. Apr 2004 B2
6735819 Iverson et al. May 2004 B2
6769155 Hess et al. Aug 2004 B2
6773411 Alvarez Aug 2004 B1
6861379 Blaszcykiewicz Mar 2005 B1
6861371 Blaszcykiewicz May 2005 B2
6898804 Sandler May 2005 B2
6898826 Draper et al. May 2005 B2
6936020 Davis Aug 2005 B2
D519637 Nordt, III et al. Apr 2006 S
D519638 Nordt, III et al. Apr 2006 S
7025738 Hall Apr 2006 B2
D520141 Nordt, III et al. May 2006 S
D521644 Nordt, III et al. May 2006 S
7037287 Cormier et al. May 2006 B2
7150721 Houser Dec 2006 B2
7161056 Gudnason et al. Jan 2007 B2
7169720 Etchells et al. Jan 2007 B2
7198610 Ingimundarson et al. Apr 2007 B2
7303539 Binder et al. Dec 2007 B2
7367958 McBean et al. May 2008 B2
7448115 Howell et al. Nov 2008 B2
7716792 Clarner May 2010 B2
7762973 Einarsson et al. Jul 2010 B2
7874996 Weinstein et al. Jan 2011 B2
7937973 Sorensen et al. May 2011 B2
8281463 Hammer Oct 2012 B2
20010020143 Stark et al. Sep 2001 A1
20010056251 Peters Dec 2001 A1
20020032397 Coligado Mar 2002 A1
20020077574 Gildersleeve et al. Jun 2002 A1
20020082542 Hall Jun 2002 A1
20020095750 Hammerslag Jul 2002 A1
20020125605 Lacey et al. Sep 2002 A1
20020132086 Su-Tuan Sep 2002 A1
20030032907 Prahl Feb 2003 A1
20030069531 Hall Apr 2003 A1
20030204156 Nelson et al. Oct 2003 A1
20040002674 Sterling Jan 2004 A1
20040054311 Sterling Mar 2004 A1
20040058102 Baychar Mar 2004 A1
20040137178 Janusson et al. Jul 2004 A1
20040137192 McVicker Jul 2004 A1
20040153016 Salmon et al. Aug 2004 A1
20040176715 Nelson Sep 2004 A1
20040199095 Frangi Oct 2004 A1
20040225245 Nelson Nov 2004 A1
20040267179 Lerman Dec 2004 A1
20050020951 Gaylord et al. Jan 2005 A1
20050038367 McCormick et al. Feb 2005 A1
20050081339 Sakabayashi Apr 2005 A1
20050159691 Turrini et al. Jul 2005 A1
20050160627 Dalgaard et al. Jul 2005 A1
20060015980 Nordt, III et al. Jan 2006 A1
20060020237 Nordt, III et al. Jan 2006 A1
20060026732 Nordt, III et al. Feb 2006 A1
20060026733 Nordt, III et al. Feb 2006 A1
20060026736 Nordt, III et al. Feb 2006 A1
20060030802 Nordt, III et al. Feb 2006 A1
20060030803 Nordt, III et al. Feb 2006 A1
20060030804 Nordt, III et al. Feb 2006 A1
20060030805 Nordt, III et al. Feb 2006 A1
20060030806 Nordt, III et al. Feb 2006 A1
20060070164 Nordt, III et al. Apr 2006 A1
20060070165 Nordt, III et al. Apr 2006 A1
20060084899 Verade et al. Apr 2006 A1
20060090806 Friedline et al. May 2006 A1
20060116619 Weinstein et al. Jun 2006 A1
20060135902 Ingimundarson et al. Jun 2006 A1
20060135903 Ingimundarson et al. Jun 2006 A1
20060155229 Ceriani et al. Jul 2006 A1
20060191110 Howell et al. Aug 2006 A1
20070083136 Einarsson Apr 2007 A1
20070167892 Gramza et al. Jul 2007 A1
20070185425 Einarsson et al. Aug 2007 A1
20070225824 Einarsson Sep 2007 A1
20080034459 Nordt, III et al. Feb 2008 A1
20080229556 Hammer Sep 2008 A1
20090099562 Ingimundarson et al. Apr 2009 A1
20090126413 Sorensen et al. May 2009 A1
20100068464 Meyer Mar 2010 A1
20100125231 Knecht May 2010 A1
20110057466 Sachee et al. Mar 2011 A1
20110275970 Paulos et al. Nov 2011 A1
20120010547 Hinds Jan 2012 A1
20120090624 Chang Apr 2012 A1
20120109031 Vollbrecht et al. May 2012 A1
20140121579 Hinds May 2014 A1
Foreign Referenced Citations (26)
Number Date Country
61400 Sep 1913 CH
846895 Aug 1952 DE
100 04 561 Aug 2001 DE
20 2004 012892 Nov 2004 DE
0050769 May 1982 EP
0 196 204 Oct 1986 EP
0 464 754 Jan 1992 EP
0 465 983 Jan 1992 EP
0611069 Aug 1994 EP
2612626 Jul 2013 EP
2399811 Mar 1979 FR
2553996 May 1985 FR
2766359 Jan 1999 FR
1209413 Oct 1970 GB
2136294 Sep 1984 GB
2 455 972 Jul 2009 GB
8801855 Mar 1988 WO
9400082 Jan 1994 WO
0049982 Aug 2000 WO
0070984 Nov 2000 WO
2006015599 Feb 2006 WO
2006069221 Jun 2006 WO
2006069222 Jun 2006 WO
2008115376 Sep 2008 WO
2010117749 Oct 2010 WO
2011073803 Jun 2011 WO
Non-Patent Literature Citations (37)
Entry
International Search Report and Written Opinion from PCT Application No. PCT/IB2010/003540, dated Oct. 13, 2011.
International Search Report and Written Opinion from PCT Application No. PCT/US2008/03237, dated Jul. 14, 2008.
Advertisement: “Custom Engineered Fabrics and Products for Advanced High Performance”, 1 page, Gehring Textiles retrieved from the Internet on Dec. 15, 2000; http://www.gehringtextiles.com/d3.html.
Article: “Thermoplastic Elastomers TPE, TPR, TPV,” 6 pages, retrieved from the Internet on Mar. 14, 2007; http://www.bpf.com/uk/bpfindustry/plastics_materials_thermplasrubber_TBR.cfm.
Advertisement: “Axiom”, 3 pages, Bledsoe Medical Technology, Inc., retrieved from the Internet Jun. 15, 2005; http://www.bledsoebrace.com/custom/axiom.asp.
Advertisement: “Bellacure: the Treatement Device”, 6 pages, Bellacure, Inc., retrieved from the Internet on Jan. 5, 2006, http://www.bellacure.com/products/index.htm.
Advertisement: “Lerman 3-Point Knee Orthosis”, 2 pages, Becker Orthopedic of Troy, MI, retrieved from the Internet on Feb. 23, 2006, http://www.beckerortho.com/knee/3-point.html.
Advertisement: “M2 Inc. Parts Catalog”, 3 pages, M2 Inc of Winooski, VT, retrieved from the Internet on Mar. 29, 2005, http://www.m2intl.com/medical.MedCisr.htm.
Advertisement: “McDavid Knee Guard and 155 Ligament Augmentation System”, 3 pages, Advanced Brace of Irving, TX, retrieved from the Internet on Mar. 8, 2005, http://www.supports4u.com/mcdavid/kneeguard.htm.
Advertisement: “Triax”, 1 page, LANXESS AG, retrieved from the Internet on Mar. 8, 2005, http://www.techcenter.lanxess.com/sty/emea/en/products/description/57/index.jsp?print=true&pid=57.
Advertising Brochure: “Anderson Knee Stabler”, 4 pages, Omni Scientific, Inc. of Lafayette, CA (2005).
Advertising Brochure: “Fusion”, 6 pages, Breg, Inc. of Vista, CA (2005).
Advertising Brochure: “Fusion XT”, 2 pages, Breg, Inc. of Vista, CA (2005).
Advertising Brochure: “GII Unloader Select”, 2 pages, Ossur HF of Reykjavik, Iceland, retrieved from the Internet on Mar. 8, 2005, http://www.ossur.com/print.asp?PageID-1729.
Advertising Brochure: “Lerman Multi-Ligaments Knee Control Orthosis”, 2 pages, Zinco Industries, Inc. of Montrose, CA (1985).
Advertising Brochure: “NuKO Camp”, 6 pages, Camp International, Inc., Jackson, MI (1984).
Advertising Brochure: “OTI Brace”, 4 pages, Orthopedic Technology, Inc., of San Leandro, CA (2005).
Advertising Brochrue: “The Four Axioms of Functional Bracing”, 1 page, Bledsoe by Medical Technology, Inc. (2005).
Advertising Brochure: “The Leader in Knee Motion Management”, 8 pages, Donjoy, Carlsbad, CA (2005).
Advertising Brochure: “The Lenox Hill Lightweight”, 1 page, Lenox Hill Brace, Inc., New York, NY (2005).
Advertising Brochure: “XCL System”, 2 pages, Innovation Sports of Foothill Ranch, CA (2005).
Cousins, s., et al., “An Orthosis for Medial or Lateral Stabilization of Arthritic Knees”, Orthotics and Prosthetics, vol. 29, No. 4, pp. 21-26, Dec. 1975.
“Osteoarthritis of the Knee: An Information Booklet”, 12 pages, Arthritis Research Campaign, retrieved from the Internet on Dec. 14, 2004, http://www.arc.org/uk/about_arth/booklets/6027/6027.htm.
Reference: “Anatomical Planes”, 1 page, retrieved from the Internet on Mar. 26, 20055, http://www.spineuniverse.com/displayarticle/phpo/article10233html.
Technical Manual: “Bellacure: Restore your Lifestyle”, 10 pages, Bellacure, Inc. (2005).
Technical Manual: “BOA Technology”, 3 pages, BOA Technology, Inc. of Steamboat Springs, CO (2005).
“Information on Flexible Polyurethane Foam”, In Touch, vol. 4, No. 3, Jul. 1994, 5 pages.
Advertising Brochure: “Freedom to Perform-Fusion”, 5 pages, (2005).
Advertising Brochure: “The 9 Innovations of the Axiom Custom Brace”, 1 page, Bledose, Medical Technology, Inc. (2005).
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/010410, dated May 2, 2014.
International Search Report and Written Opinion from International Application No. PCT/US2013/069558, dated Jul. 3, 2014.
International Search Report and Written Opinion from International Application No. PCT/US2014/010407, dated Jul. 10, 2014.
International Search Report and Written Opinion from International Application No. PCT/US2014/033266, dated Jul. 23, 2014.
International Search Report from PCT Application No. PCT/US2016/012346, dated May 6, 2016.
Extended European Search Report from EP Application No. 10 17 2396, dated Oct. 8, 2010, 5 pages.
Extended European Search Report from EP Application No. 08 74 2047, dated Jun. 6, 2013, 6 pages.
International Search Report and Written Opinion from International PCT Application No. PCT/US2014/014192, dated May 20, 2014.
Related Publications (1)
Number Date Country
20170027731 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
61725539 Nov 2012 US
Continuations (1)
Number Date Country
Parent 14077436 Nov 2013 US
Child 15291326 US