The present invention relates generally to roof coverings. More specifically, the present invention is a roofing shingle with an advantageous arrangement of adhesives and construction lines that better protects nails and fastening equipment from degradation due to exposure.
Roof shingles are a roof covering consisting of individual overlapping elements. These elements are typically flat, rectangular shapes that are laid in courses from the bottom edge of a roof up, with each successive course overlapping the joints below. Roof shingles are a very common roofing material globally. Roofing shingles are important for protecting the interior of a house or building and for contributing to a building's general aesthetics in patterns, textures and colors due to how highly visible they are. Many shingle installations benefit from being placed atop an underlayment material, such as asphalt felt paper, to prevent leaks even from wind-driven rain, snow, and ice dams in cold climates. Roof shingles boost the solidity and longevity of residential rooftops. Safeguarding the roof and enhancing the roofing beauty of a home are two of the key purposes of installing roof shingles. Furthermore, many roof shingles are non-combustible or have better fire ratings than others which provide additional fire protection.
Fiberglass-based asphalt shingles are the most common roofing material used for residential roofing. Asphalt shingles are easy to install, relatively affordable, and typically last between 20 and 50 years. Shingles tend to last longer where the weather stays consistent, either consistently warm, or consistently cool. Thermal shock fatigue resulting from dramatic fluctuations in ambient temperature within a short period of time can damage shingles. This is because over time, asphalt becomes oxidized, and consequently, brittle. The protective nature of asphalt shingles primarily comes from the long-chain hydrocarbons impregnating the paper.
Over time, in the hot sun, the hydrocarbons soften. Eventually, when rain falls, the softened hydrocarbons are gradually washed out of the shingles and down onto the ground. Along eaves and complex rooflines, more water is channeled, so the loss of hydrocarbons and oils occurs more quickly. Eventually, the loss of heavy oils causes the fibers in the roofing shingle to shrink, which exposes the nail heads under the shingle flap. The shrinkage also breaks up the surface coating of sand adhered to the surface of the paper and eventually causes the paper to begin to tear apart. Once the nail heads are exposed and rusted, water running down the roof can seep into the building around the nail shank, resulting in rotting of roof building materials and causing moisture damage to ceilings and paint inside. The placement of the nails on the roofing shingles may affect the rate in which the nail heads are exposed to the elements.
The Asphalt Roofing Manufacturers Association (ARMA) recommends that properly driven roofing nails be utilized as the fastening system for asphalt shingles. Nails are required in the International Building Code. Nails are never to be placed where they can be visibly exposed or weathered. Many roof shingles with sealant on the top surface are manufactured with a nailing line that is below a seamline but above the exposed area. This is typically around a half inch above the exposed area. It is highly recommended that the directions of manufactured roof shingles are followed extremely precisely and carefully in order to avoid any potential accidents or issues that may follow from faulty installation of roof shingles.
Due to the placement of the nails below the sealant strip of a typical roof shingle, the nails are more prone to overexposure and rust. Though the nails are not directly exposed to the environment and rather covered by the layered roof shingles, water from the rain can still leak over damaged shingles onto the nails. Many roof shingles are manufactured in such a way that rainwater can easily leak out from the sides of the shingles. Moisture can easily get under the layers of the roof shingles and cause leaks which can lead to molding and rotting.
The present invention is an improvement of a typical manufactured roof shingle. An objective of the present invention is to provide a solution for nails that become damaged due to weather exposure. The present invention places the nailing line above the seamline rather than on or below the seamline. By placing the nailing line further above the seamline, which typically borders an exposed section and overlapped section, the nails are further protected from being exposed to the elements. Nails are less likely to get wet by rainwater, which decreases the chances of rusting. The present invention shifts the nailing line to a position that is about 2.5 inches higher than the nailing line of a typical roof shingle. Due to the shift in the nailing line, a spotted adhesive may be positioned two inches below the nailing line and the length of a solid section may be increased.
Another objective of this present invention is to guide and direct rainwater straight down the roof and to prevent water from leaking out of the sides of a roofing shingle. The present invention places solid adhesive strips along the sides of the roofing shingle. The solid adhesive strips prevent water from creating puddles or leaking laterally out to the sides and into other layers of shingling. The solid adhesive strips can direct the rainwater vertically down the roof and prevent additional leaking.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention is a fastener-protecting roofing shingle that provides a solution for roofing nails or fasteners that become damaged due to weather exposure resulting from damaged roofing shingles. The general configuration of the aforementioned components allows the present invention to efficiently and effectively protect nails from being exposed to the elements, which decreases the chances of shingle failure due to the nail rusting. The present invention may comprise a shingle body 1, a nailing indicator 8, at least one quantity of liquid sealing adhesive 9, a plurality of adhesive strips 10, and a separation plane 11. The shingle body 1 denotes the volume occupied by the present invention, as shown in
This arrangement of components enables the present invention to efficiently and effectively protect both rooftops and roofing materials. The shingle body 1 may comprise a first face 2 and a second face 7, as shown in
The exposed edge 5 is positioned opposite to the separation plane 11 across the exposed portion 3, as shown in
In order to ensure that fluid, especially rainwater and other rooftop runoff water, can escape the roof effectively, it may be advantageous for the present invention to include further mechanisms for redirecting water. To this end, the present invention may further comprise a plurality of fluid channels 12, as shown in
It may be further advantageous to ensure that the plurality of fluid channels 12 is arranged to channel water in the right direction. To this end, each of the plurality of fluid channels 12 traverses from the separation plane 11 to the exposed edge 5, as shown in
The at least one quantity of liquid sealing adhesive 9 must be positioned appropriately to enable secure attachment of the shingle body 1 to a rooftop. To this end, the at least one quantity of liquid sealing adhesive 9 may be arranged in a spotted linear pattern between the plurality of adhesive strips 10, wherein the spotted linear pattern is positioned adjacent to the exposed edge 5, as shown in
The plurality of adhesive strips 10 must be capable of both securing the shingle body 1 upon a rooftop and preventing water from contacting nails that pierce through the shingle body 1 during the mounting process. Thus, the plurality of adhesive strips 10 may span across the second face 7 up to the separation plane 11, as shown in
Among the most important distinguishing features of the present invention is the separation between the nailing indicator 8 and the separation plane 11. A first distance 13 between the nailing indicator 8 and the separation plane 11 may be 2.5 inches, as shown in
A user of the present invention may desire increased nailing room in order to optimally fasten nails into the unexposed portion 4. To provide for this, a second distance 14 between the nailing indicator 8 and the covered edge 6 of the unexposed portion 4 may be 5.625 inches, as shown in
The exposed portion 3 must sufficiently extend beyond the separation plane 11 in order to protect the roof and the roofing shingles below. To this end, a third distance 15 between the exposed edge 5 and the separation plane 11 is 5.625 inches, as shown in
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The current application claims a priority to the U.S. Provisional Patent application Ser. No. 62/983,349 filed on Feb. 28, 2020. The current application is filed on Mar. 1, 2021 while Feb. 28, 2021 was on a weekend.
Number | Name | Date | Kind |
---|---|---|---|
3252257 | Price et al. | May 1966 | A |
5239802 | Robinson | Aug 1993 | A |
5853858 | Bondoc | Dec 1998 | A |
6494010 | Brandon | Dec 2002 | B1 |
6895724 | Naipawer, III | May 2005 | B2 |
7204063 | Kandalgaonkar | Apr 2007 | B2 |
8607521 | Belt | Dec 2013 | B2 |
8984835 | Kalkanoglu et al. | Mar 2015 | B2 |
9758970 | Grubka | Sep 2017 | B2 |
10358824 | Aschenbeck | Jul 2019 | B2 |
10947729 | Collins | Mar 2021 | B2 |
20080134612 | Koschitzky | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20210270037 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62983349 | Feb 2020 | US |