The present invention relates to a fastener and, more particularly, to a fastener with lateral fastening mechanism suitable for fastening an object from its lateral side.
The basic function of a fastener is to join two devices, or to release one of the devices through simple operation. The mechanism of a fastener is often applied to an object such as a door or, more specifically, a door used as an operation panel for house appliance. Conventional fasteners are varied in designs, and their operating methods are very different as a result. In general, a common fastener often employs press operation as its actuation method, in which the first press action means a linking function, whereas the second press action means a releasing function.
A clamp-style fastener is disclosed in R.O.C. Patent Publication No. 568197, which includes a fixed body and a sliding body, wherein the fixed body includes a U-shaped flexible actuating lever and a spring, located at the bottom of the accommodation slot of the fixed body, whereas the sliding body includes an actuating panel capable of making sliding movement inside the accommodation slot. Besides, the actuating lever includes two hanging terminals that are facing oppositely to each other and capable of making mutual interaction between themselves and the protruding blocks at the two sides of actuating panel of the sliding body through resilience generated by the spring. By means of such interaction, the sliding body can remain at a certain position and thus complete a press operation of the fastener.
In
The present invention provides a fastener with lateral fastening mechanism, capable of fastening or unfastening an object from the lateral side of the object, and especially suitable for an object that cannot be fastened from its ends.
According to one embodiment of the present invention, the disclosed fastener with lateral fastening mechanism includes an outer case, a slide block, a claw-shaped head, and a flexible member, wherein the outer case is a hollow tubular member, with one end closed and the other end open, allowing the slide block to make free in-and-out movement from the open end; also, a pivotally-connected swing lever is provided inside the outer case; the slide block can make sliding movement inside the outer case in such a way that one movement can go to a first position where the slide block can be hidden inside the outer case, and another movement to a second position where the slide block can stick out from the outer case; besides, one end of the slide block is pivotally connected to the claw-shaped head so that the flexible member can constantly provide force to push the claw-shaped head and slide block into motions; on the other hand, a guide area with special geometric-designed blocks around the slide block can interact with the swing end of the swing lever for motions, and through such interaction, the position of the slide block can be determined, which is at either the first position or the second position; thus, under interaction and control given by the slide block, the claw-shaped head can be actuated so as to fasten or unfasten an object.
Another embodiment of the present invention also includes a friction member fastened inside the outer case, wherein the friction member has a resilient sheet capable of pushing the swing lever towards the guide area of the slide block by its resilience so as to provide friction for preventing the swing lever from making unintentional sway.
The objects and technical contents of the present invention will be better understood through the description of the following embodiments with reference to the drawings.
Referring to
Firstly, the outer case 10 is a hollow tubular member, with a closed end 101 closed and an open end 102 open, allowing the slide block 30 to make free in-and-out movement from the open end 102. Also, a swing lever 60 is pivotally connected to an axle hole 11 located inside the outer case 10 and held by a lever axle 601 provided at one end of swing lever 60. Alternatively, the lever axle 601 of swing lever 60 can also be pivotally connected to a wall surface 203, as shown in
Secondly, the slide block 30 includes a jutted nose 34, which can be pushed for movement by an object, thereby actuating the slide block 30 for sliding. The slide block 30 can freely slide inside the outer case 10 towards a first position where the slide block 30 is hidden inside the outer case 10, as shown in
Thirdly, the claw-shaped head 40 includes a claw portion 41 and a pair of extended arms 42a and 42b. The extended arms 42a and 42b have pivot holes 43a and 43b respectively, and through the pivot holes the extended arms 42a and 42b can be pivotally connected to the block axle 33. Also, an inclined plane 331 is provided at one end of block axle 33, facing the claw-shaped head 40. Through guidance offered by the inclined plane 331, the extended arms 42a and 42b can pass easily, allowing the pivot holes 42a and 43b to be pivotally connected to the block axle 33 of slide block 30. In addition, the claw-shaped head 40 can move freely inside the outer case 10 in accordance with the movement made by the slide block 30. When the slide block 30 is positioned at the second position, the block axle 33 will slightly stick out of the open end 102 of outer case 10, allowing the claw portion 41 of claw-shaped head 40 to move to one side of outer case 10, and in such state, the claw portion 41 can avoid dropping in the path P where the object A waiting to be fastened will meet with the nose 34, as shown in
Fourthly, the flexible member 50, a compression spring in the illustrated embodiment, can go freely through a through hole 35 located at the center of slide block 30. One end of flexible member 50 countervails the closed end 101 of outer case 10, whereas the other end of flexible member 50 countervails a fastening bolt 44 located at the inner side of claw portion 41. Thus, the flexible member 50 can constantly provide resilience to push the claw portion 41 of claw-shaped head 40 towards the direction of sticking out of the outer case 10.
Finally, the guide area 31 of slide block 30 includes a plurality of protruded blocks, wherein each protruded block has a shape of specific geometric design. These protruded blocks provide four slanting planes T1, T2, T3, and T4 and two straight guiding lines, the first guiding line G1 and the second guiding line G2. When the slide block 30 is sliding inside the outer case 10, the four slanting planes T1, T2, T3, and T4 and the two guiding lines G1 and G2 can interact with the swing end 61 of swing lever 60 for motion, and during the interaction, the position of slide block 30 can be decided to be at either the first or the second position.
Referring to
Next, referring to
When the object A moves toward the nose 34 along the path P and meets with the nose 34, as shown in
As the slide block 30 moves towards the closed end 101 of outer case 10, the claw-shaped head 40 will be actuated, moving correspondingly into the inside of outer case 10. As soon as the claw-shaped head 40 slides into the open end 102 of outer case 10, the claw-shaped head 40 will be guided by a top-ending rim 103 formed by three adjacent top-ending portions along the rim of open end 102 and moves towards the nose 34 by using the block axle 33 as its center, followed by an act of clamping, as shown in
Afterwards, when the object A is to be withdrawn, the only thing need to do is to push the object A towards the closed end 101 of outer case 10. By doing so, the slide block 30 can be actuated and begin to slide in the same direction. Meanwhile, the swing end 61 of swing lever 60 will move closer to the fourth slanting plane T4. As the slide block 30 keeps the on-going movement, the fourth slanting plane T4 will guide the swing end 61 of swing lever 60 towards the edge of guide area 31 of slide block 30, as shown in
The embodiments above are only intended to illustrate the present invention; they do not, however, to limit the present invention to the specific embodiments. Accordingly, various modifications and changes may be made without departing from the spirit and scope of the present invention as described in the following claims.