The present application claims priority to U.S. patent application Ser. No. 14/051,470, filed Oct. 11, 2013, the contents of which are herein incorporated by reference in their entirety.
The disclosure relates to fasteners, and more particularly to a multi-orientation, slide-in fastener configured for anchoring components.
In various industries fasteners play a critical role in the assembly of various products, and it is generally desirable to enable such fasteners to be unfastened in order to permit servicing components either associated with the fasteners or enclosed within an area secured by such fasteners. While it is desirable to enable such fasteners to be unfastened it is also important that such fasteners hold tightly under varying stresses and loads, while also remaining free from generation of sound due to vibration, among others.
For example, in the automotive industry many pieces of a vehicle are fastened to other pieces of the vehicle, e.g. headliners to a roof of the vehicle, and it is important that these fasteners have high closure strength, while remaining silent. It is also desirable that these fasteners are easy to install while also facilitating removal when repairs are needed.
In addition, numerous configurations exist at installation time, for example, in an automotive application, a single fastener design is often insufficient to meet the required installation configuration. Therefore, it is necessary to have numerous fastener configurations available during installation. This means that a manufacturer must be able to provide a number of custom fastener configurations for various applications, which can lead to added cost and manufacturing issues.
U.S. Pat. No. 7,695,057 discloses a plastic spacer/riser to increase usable height of a reclosable fastening system, such as 3M™ Dual Lock™ or Velcro® hook and loop products. The spacer/riser is adapted to be held in place on an external substrate with hot-melt glues sonic welds, pressure-sensitive adhesives, acrylic foam tape, or screws. Such techniques however, may result in eventual failure of the device after periods of varying vibration.
It is accordingly a primary object of the disclosure to provide a fastener which is easy to install, holds fast to the fastened elements, and facilitates removal, but only when desired.
In accordance with the disclosure, a fastening element is provided. The fastening element includes a gripping portion having a gripping face and a back face, the gripping face comprising at least one row of gripping elements, an anchoring portion located opposite the back face and configured to anchor the fastening element to a retainer, the anchoring portion comprising a flange parallel to the back face and configured to be removably inserted at a portion of the retainer. The flange presents a flange surface area as measured on a lower face of the flange that is between 10 and 90 percent of a gripping face surface area as measured on the gripping face.
By providing a fastening element according to embodiments of the present invention, a multitude orientations for the fastening element is provided. Therefore, it may be possible to easily insert the fastening element in the retainer at any point along the retainer, for example by way of tilting the fastening element to insert a first edge of the flange into the retainer, and then leveling the flange portion so that a second edge of the flange is inserted into the retainer. Moreover, no matter the orientation of the retainer, the fastening element may be inserted in the retainer at a desired orientation so as to correctly mate with a surface to be fastened, thereby eliminating the need to manufacture customized fastening elements for each individual location.
A support connecting the back face with the flange may be provided. Therefore, a desired spacing may be provided between the flange and the gripping portion so as to further enable easy insertion into the retainer.
The flange portion may include twice the number of sides comprised by the gripping portion. Such a feature may enable many orientations of the fastening element for a given retainer cross-section.
At least two edges of the flange may be co-planar with at least two edges of the gripping portion.
The flange may be in the shape of a polygon selected from one of a pentagon, a hexagon, a heptagon, and an octagon.
The gripping portion and the flange may have different shapes, for example, the gripping portion may be rectangular and the flange may be octagonal.
The support may be cylindrical, rectangular, or any polygon as desired.
The flange shape may also be, for example, circular or elliptical.
At least one of the gripping portion and the flange may be asymmetric according to some embodiments.
The at least one row of gripping elements can be bonded to the gripping face. For example, a sheet including the gripping elements and a layer of adhesive may be pressed onto the gripping face. This may enable an assembler to apply a desired gripping element configuration to the gripping face at a time of installation. The sheet of gripping elements may be a single orientation or an alternating orientation.
The flange may include at least one raised portion 39 configured to create an interference fit within the retainer 3. Raised portion 39 may be configured to interact with retainer 3 no matter the orientation at which the flange is inserted into the retainer.
The gripping elements may be selected from one of hooks, loops, and a combination thereof. The hooks may have a single orientation across the entire gripping face, or the hooks may have an alternating orientation across the entire gripping face.
The length of each side of the flange may be equal. For example, an octagonal flange may have 8 equal sides.
The flange surface area as measured on a lower face of the flange may be between 25 percent and 75 percent, in particular between 45 and 55 percent of a gripping face surface area as measured on the gripping face.
One of skill in the art will understand that various combinations of the above elements may be made except where clearly contradictory.
Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one (several) embodiment(s) of the disclosure and together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the present exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Fastener 1 may be molded, e.g., injection molded, using various materials, for example, thermoplastic, composite, and/or other suitable materials. Thermoplastic materials may include polypropylenes or polyurethanes according to embodiments of the present disclosure. For example, for a polypropylene, a mixture of unsaturated polyester constituted by 50% homopolymer and 50% copolymer can be chosen, having a fluidity index in molten state of 22 g/10 mn and a flexion module of 130,000 to 150,000 psi. Other possible materials include a polypropylene of Atofina, PPC 5660, having a fluidity index in molten state of 7 and a flexion module of 175,000 psi, propylene copolymers of BP Amoco (Acclear 8949 and Acctuf impact copolymer 3934X) having fluidity index values in molten state of 35 to 100, and flexion modules of 190,000 to 250,000 psi; polystyrenes, acrylonitrile butadiene styrenes, high density polyethylene, low density linear polyethylene, polycarbonate. The indexes in molten state are between 1 and 100 and the flexion modules are between 30,000 and 1,140,000, preferably between 100,000 and 1,000,000, more preferably between 300,000 and 1,000,000.
Resins other than propylene-based resins which may be suitable include impact polystyrene, acrylonitrile butadiene styrene, nylon, high density polyethylene, low density linear polyethylene, polycarbonate and olefinic thermoplastic resins. Polypropylenes can also be provided which are reinforced by long glass fibers, having a very high flexion module (resin 30YM240/10010 having a flexion module of 856,000 psi and resin 40YM240/10010 having a flexion module of 1,140,000 psi, sold by StaMax). In this case, the long glass fibers do not migrate into the cavities (which are too small or too thin for the long fibers to penetrate therein), and a very rigid plate is obtained with flexible hooks.
According to some embodiments, fastener 1 is injection molded using a single-step process such that the resulting device is of unitary construction, i.e., all elements of fastener 1 are integrally formed. Such formation may yield desirable strength and ease of fabrication, as well as eliminating need for assembly of layered portions (e.g., a gripping portion layer) to a base layer. The device may comprise a visible injection gate. Alternatively, portions of fastener 1 may be injection molded using a single step process, and for example, gripping elements may be joined to fastener 1 by adhesive, or other suitable bonding (e.g. melting and re-solidification).
Gripping portion 5 may present a gripping face 6 and a back face 7. Gripping portion 5 may be of any desirable geometric shape, for example, gripping portion 5 may present a rectangular or other polygonal shape, a rounded shape, etc. According to some embodiments, as shown at
Gripping portion 5 may present a gripping face surface area GFSA as measured on gripping face 6 of gripping portion 5. One of skill in the art will recognize that different methods for calculating the surface area of gripping face 6, particularly depending on a shape of gripping portion 5, may be utilized (e.g., computer aided measuring and calculation), and such methods for calculating surface area are well known in the art. For example, gripping face surface area GFSA of gripping face 6 shown at
GFSA=L·W (1)
According to some embodiments, when a rectangular gripping portion 5 is implemented, a ratio between a length L and a width W of the sides of the rectangle may be between approximately 1.5 and 2.0. This ratio is exemplary, and not intended to be limiting.
Gripping face 6 and back face 7 are parallel to one another and are substantially of the same shape (e.g., rectangular) and size. For example, where gripping face 6 is rectangular, back face 7 may also be rectangular having the same dimensions as gripping face 6.
Gripping portion 5 may be provided with a plurality of gripping elements 20 and/or 20′ extending from gripping portion 5 (e.g., from gripping face 6) at a height H. According to some embodiments, gripping elements 20 and/or 20′ may extend in rows perpendicularly away from gripping portion 5 such that distal portions of gripping elements 20 and/or 20′ are spaced at a predetermined distance from gripping face 6 and back face 7. Importantly, one of skill will understand that gripping elements 20 and/or 20′ may extend in any direction desirable for achieving a desired fastening, and the entire plurality of gripping elements 20 and/or 20′ need not extend in the same direction. Further, height H may vary among gripping elements 20 and/or 20′, or may be substantially uniform.
Gripping elements 20 and/or 20′ may comprise hooks and/or loops whose characteristics enable gripping elements 20 and/or 20′ to achieve fastening with another desired surface, for example, a surface comprising a plurality of loops or hooks designed to interact with gripping elements 20 and/or 20′ to effect such a fastening. Gripping elements 20 and/or 20′ may be arranged in rows and columns. According to some embodiments gripping elements 20 and/or 20′ may be arranged with an alternating orientation of their heads within a row, and over substantially the entire gripping face 6, as shown at, for example 3A so as to facilitate the fastening with the second surface. Alternatively, as shown at
As used herein the term “head” relating to a gripping element 20 and/or 20′ refers to a distal portion of gripping element 20 and/or 20′ where the active portion of the hook is located (i.e., the curved hooking surface).
Gripping elements 20 and/or 20′ may cover a substantial area associated with gripping face 6. For example, coverage of at least 50, 60, 70, 80 and even 90 percent of gripping face surface area GFSA may be effected by gripping elements 20 and/or 20′. One skilled in the art will recognize that any desirable coverage amount for gripping elements 20 and/or 20′ may be implemented without departing from the scope of the present disclosure.
When gripping elements 20 and/or 20′ are implemented as hooks, hooks 20 may have a distinct orientation/bias. In other words, one of skill understands that a single hook has a single direction by which the hooking can be effected. Therefore, it becomes possible to arrange a row 19 of hooks 20 having a single orientation within the row 19 as shown at
Alternatively, according to some embodiments, orientation of hooks 20 may be alternated throughout a row 19 of hooks 20 and 20′, so as to present an alternating orientation, as shown at
Anchoring portion 15 may be configured to enable fastener 1 to be anchored within a retainer 3 or other suitable portion of a part to be fastened, or alternatively to a surface to which the part is to be fastened. Anchoring portion 15 may therefore extend parallel to back face 7 of gripping portion 5 so as to form a flange 35. Flange 35 may present a lower surface 47 having a series of voids 57, i.e., absence of material, (see
Flange 35 may be configured to be removably inserted at a portion of retainer 3. Therefore, flange 35 may present a flange surface area as measured on a lower face 47 of flange 35, that is between 10 and 90 percent of gripping face surface area GFSA as measured on gripping face 6, better, between 20 and 70 percent, better still between 30 and 65 percent. According to further embodiments, flange surface area FSA may be preferably between 45 and 55 percent of gripping face surface area GFSA.
When measuring flange surface area FSA for purposes of the present disclosure, voids 57 in flange 35 are not to be subtracted from the surface area, and should be treated as part of flange surface area FSA of flange 35. Thus, as an example, a flange surface area of an octagonal flange 35 as shown at both
FSA=2(1+√{square root over (2)})α2 (2)
Flange 35 may be configured such that a flange thickness TF of flange 35 is between 5 and 15 percent of a maximum width of flange 35. For example, for an octagonal flange having a circum diameter of 20 mm, a thickness TF of flange 35 may be approximately 1.4 mm.
Flange 35 may have a shape different from that of gripping portion 5. For example, where flange 35 is octagonal, gripping portion 5 may be rectangular. Such a configuration enables multiple orientations of fastener 1 during installation.
Further, flange 35 may include twice the number of sides comprised by gripping portion 5. For example, where gripping portion 5 is a rectangular shape (i.e., four sided polygon), flange 35 may have an octagonal shape (i.e., an eight sided polygon). Similarly, where gripping portion 5 is triangular (i.e., a three sided polygon), flange 35 may have a hexagonal shape (i.e., a six sided polygon). One of skill in the art will recognize that such a pattern may be continued and/or modified as desired.
At least two edges of flange 35 may be co-planar with at least two edges of gripping portion 5. For example, as shown at
Flange 35 may be of any desired shape, and particularly, may be a polygon or a rounded shape. When flange 35 is a polygon, a shape may be selected from one of a pentagon, a hexagon, a heptagon, an octagon, etc. One of skill will recognize that this list of shapes is not exhaustive, and other shapes are intended to fall within the scope of the present disclosure. When such polygons are implemented, lengths of each side of the polygon may be substantially equal (e.g., as shown at
When a rounded shape is implemented for flange 35, such a shape may be selected from a circle, an ellipse, a hemisphere, a crescent, etc.
Flange 35 may include at least one chamfer 36. Chamfer 36 may be configured, for example, to facilitate insertion of flange 35 into retainer 3. Chamfer 36 may therefore be located on a top and/or bottom portion of flange 35, for example. Thus, flange 35 may be chamfered such that at least one chamfer extends in a direction parallel to back face 7 of gripping portion 5.
Chamfer 36 may form an angle with a plane perpendicular to back face 7 ranging between 1 and 60 degrees, for example, between 20 and 45 degrees. Chamfer 36, being located on flange 35 can be present on a leading portion of anchoring portion 15 as anchoring portion 15 is installed into retainer 3.
Flange 35 may include other chamfer configurations as well. Such chamfers may be desirable where, for example, anchoring portion 35 is to be installed in channel type or other narrow height retainer 3, and may permit additional interference fitting of flange 35 within retainer 3.
Notably flange 35 may include one or more raised portions 39 (see
Importantly, any combination of locations for one or more raised portions 39 may be implemented without departing from the scope of the present disclosure.
Where an arcuate or partially spherical shape is implemented for raised portion 39, raised portion 39 may present a radius of curvature of between 2 and 3 times thickness T of fastener 1. For example, a protrusion may have a radius of curvature ranging between 10 and 30 mm, 14 and 18 mm, for example 16 mm. One of skill will recognize that where opposed raised portions 39 are implemented, e.g., on back face 7 and a top surface of anchoring portion 15, this radius of curvature may be modified to facilitate installation of fastener 1 while continuing to provide a desired level of interference between the installed portions.
Further, by implementing raised portions 39, the resulting interference may reduce or eliminate rattle and movement of fastener 1 in its installed condition.
Anchoring portion 15 may include a support 10 extending from back face 7 to connect flange 35 with gripping portion 5. Importantly, while support 10, anchoring portion 15, and gripping portion 5 are referred to herein as a separate portions, one of skill will understand that where fastener 1 has been unitarily formed, this reference is for ease of understanding only and that it is not intended that such portions be distinctly separate.
Support 10 may be of any suitable thickness and any desirable height for purposes of spacing gripping portion 5 and anchoring portion 15. For example, a height of support 10 may represent between 20 and 70 percent of the overall thickness T of fastener 1, better between 35 and 60 percent, and preferably between 40 and 50 percent.
Support 10 may present a supporting-portion width SPW that is smaller than both a gripping-portion width W of gripping portion 5 and a flange width FW of flange 35. One of skill in the art will recognize that depending on a fastening configuration desired and a shape associated with gripping portion 5.
Adhesive layer 8 may be any suitable adhesive presenting desired strength and curing properties based on an application.
Importantly,
Further, fastener 1 of
One of skill in the art will recognize upon reading the present disclosure that fastener 1 can be implemented in any number of designs for effecting a fastening. For example, automotive headliners, door liners, and other elements may be securely fastened while enabling easy removal when repairs or other conditions dictate.
Further, according to some embodiments, fastener 1 has less than 100 orientations, in particular less than 25 orientations, in such case 10 or less than 10 orientations, relative to retainer 3.
Although the present disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure.
Throughout the description, including the claims, the term “comprising a” should be understood as being synonymous with “comprising at least one” unless otherwise stated. In addition, any range set forth in the description, including the claims should be understood as including its end value(s) unless otherwise stated. Specific values for described elements should be understood to be within accepted manufacturing or industry tolerances known to one of skill in the art, and any use of the terms “substantially” and/or “approximately” and/or “generally” should be understood to mean falling within such accepted tolerances, unless otherwise specified herein.
Where any standards of national, international, or other standards body are referenced (e.g., ISO, etc.), such references are intended to refer to the standard as defined by the national or international standards body as of the priority date of the present specification. Any subsequent substantive changes to such standards are not intended to modify the scope and/or definitions of the present disclosure and/or claims.
It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/071918 | 10/13/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/052349 | 4/16/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3505772 | De Claire | Apr 1970 | A |
3851357 | Ribich | Dec 1974 | A |
4270328 | Page | Jun 1981 | A |
4394054 | Nieboer | Jul 1983 | A |
4541036 | Landries | Sep 1985 | A |
4825515 | Wolterstorff, Jr. | May 1989 | A |
5058245 | Saito | Oct 1991 | A |
5081709 | Benyo | Jan 1992 | A |
5180219 | Geddie | Jan 1993 | A |
5245732 | Johnston | Sep 1993 | A |
5452184 | Scholder | Sep 1995 | A |
5500268 | Billarant | Mar 1996 | A |
5537720 | Takizawa | Jul 1996 | A |
5537793 | Murasaki | Jul 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5579562 | Hattori | Dec 1996 | A |
5634245 | Rouser | Jun 1997 | A |
5655268 | Keyaki | Aug 1997 | A |
5678286 | Murasaki | Oct 1997 | A |
5706672 | Miyazaki | Jan 1998 | A |
5800760 | Takizawa | Sep 1998 | A |
5846017 | Meyer | Dec 1998 | A |
5857245 | Sakakibara | Jan 1999 | A |
5860194 | Takizawa | Jan 1999 | A |
6112377 | Wilson | Sep 2000 | A |
6120170 | Hamelbeck | Sep 2000 | A |
6176738 | Consoli | Jan 2001 | B1 |
6254304 | Takizawa | Jul 2001 | B1 |
6314622 | Takizawa | Nov 2001 | B1 |
6406242 | Gordon | Jun 2002 | B1 |
6430786 | Ikeda | Aug 2002 | B1 |
6451239 | Wilson | Sep 2002 | B1 |
6510592 | Hamilton | Jan 2003 | B1 |
6572945 | Bries | Jun 2003 | B2 |
6640348 | Clune et al. | Nov 2003 | B1 |
6772484 | Miyano | Aug 2004 | B2 |
7021019 | Knauseder | Apr 2006 | B2 |
7048984 | Seth | May 2006 | B2 |
7132144 | Roberts | Nov 2006 | B2 |
7141283 | Janzen | Nov 2006 | B2 |
7204000 | Benedetti | Apr 2007 | B2 |
7308738 | Barvosa-Carter | Dec 2007 | B2 |
7390057 | Autterson | Jun 2008 | B2 |
7582105 | Kolster | Sep 2009 | B2 |
7644975 | Ryan | Jan 2010 | B2 |
7695057 | Autterson | Apr 2010 | B2 |
7954206 | Scroggie | Jun 2011 | B2 |
8281463 | Hammer | Oct 2012 | B2 |
8480273 | Murata | Jul 2013 | B2 |
8678460 | Stachura | Mar 2014 | B2 |
8732910 | Paul | May 2014 | B1 |
8943655 | Kabeya | Feb 2015 | B2 |
9004804 | Yamamoto | Apr 2015 | B2 |
9155362 | Shimizu | Oct 2015 | B2 |
9346433 | You | May 2016 | B2 |
9429176 | Morris | Aug 2016 | B2 |
20040137192 | McVicker | Jul 2004 | A1 |
20070147954 | Autterson | Jun 2007 | A1 |
20080244878 | Hoehe | Oct 2008 | A1 |
20110057466 | Sachee et al. | Mar 2011 | A1 |
20110111165 | Mahe | May 2011 | A1 |
20110167598 | Cheng | Jul 2011 | A1 |
20110209810 | Autterson | Sep 2011 | A1 |
20120011685 | Rocha | Jan 2012 | A1 |
20130000085 | Cina | Jan 2013 | A1 |
20160236592 | Peniche | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
1481603 | Dec 2004 | EP |
H09-23907 | Jan 1997 | JP |
2000027817 | Jan 2000 | JP |
2012175173 | Dec 2012 | WO |
2013178339 | Dec 2013 | WO |
Entry |
---|
European Search Report and Written Opinion issued in corresponding EP Application No. 13194264, dated Apr. 9, 2015, (5 pages). |
Examination Report issued in corresponding GB App. No. 1418073.1, dated Mar. 2, 2017 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20160242513 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14051470 | Oct 2013 | US |
Child | 15027435 | US |