1. Technical Field
This present invention is directed to a fastener assembly and, more particularly, a fastener having a moveable portion that improves insertion of the fastener into an aperture, as well as improves the retention of the fastener within the aperture.
2. Discussion
A wide range of fasteners exist for securing a first member to a second member. The first member is typically a base member, such as a vehicle frame or body having an aperture for receiving the shank of the fastener. The second member may be any object capable of being secured to the base member, such as a door panel, electrical wiring, and hoses.
The fastener typically includes a head assembly useful in connection with securing two members together. For example, if a door panel is to be secured to the vehicle body, a flat head assembly may be used. To secure an elongated object such as electrical wiring to the base member, a clip head assembly may be used for retaining, routing, and bundling elongated objects. The head assembly may also be configured to have multiple functions such as assembling two members together while also retaining an elongated object.
A fastener must be easily inserted into an aperture yet sufficiently resistant to extraction. Typically, fasteners include a solid shank from which arcuate fins extend upwardly. These arcuate fins generally allow for easy insertion through an aperture having a smaller diameter than the outer diameter of the fins in a normal position as the fins compress upward and inward as they are inserted thereby reducing their diameter. The arcuate fins are also designed to resist extraction after insertion by expanding outwardly from the normal position while maintaining engagement of the underside of the member having the aperture. Many patents have been filed on various designs, shapes, and configurations of these fins, each one attempting to provide for easier insertion while improving the retention force and the resistance to removal of the fastener from the aperture. In some embodiments, the design of fins alone does not provide enough retention force, ease of insertion, or the desired combination of insertion force and resistance to extraction. Therefore, it is desirable to have a fastener that may utilize any configuration of fins while yet allowing easier insertion into an aperture combined with a greater retention force. It is also desirable to allow for a fastener using any configuration of fins to be inserted into an aperture having a smaller diameter then it was previously capable of.
Another problem with fasteners is that manufacturing tolerances of the fastener, or more particularly of the aperture into which the fastener is inserted may vary. In some instances, manufacturing tolerances may allow unintended release of the fastener or for the fastener to loosen. Therefore, it is desirable for a fastener to be capable of maintaining engagement within an aperture across a broader range of manufacturing tolerances than was previously possible.
In view of the above, the present invention relates to a fastener assembly, more particularly to a fastener assembly allowing for easier insertion as well as greater retention force and resistance to removal.
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
The fastener assembly 10 is generally illustrated in
As illustrated in
As illustrated in
A shank 40 having a longitudinal axis 44 extends between the first end 32 and second end 34. The shank 40 may be formed with any size, shape, or configuration but is generally formed to work in conjunction with the size and shape of the desired aperture 22 to allow for insertion and resistance to removal of the shank 40 from the aperture 22. The shank 40 generally includes fins 36. These fins 36 are commonly arcuate fins having an outside diameter, however, square fins, rectangular fins, and other sizes, shapes, and configurations may be used. The fins 36 may be broken into various portions around the circumference of the shank 40 forming groups of fins arranged along the longitudinal axis 44 of the shank.
The shank 40 further includes a stationary member 42 and a moveable member 50. The stationary member 42 is generally formed to extend substantially rigid between the first end 32 and second end 34. The stationary member 42 forms a portion of the shank 40 that is the structural backbone of the fastener 30, such that the shank 40 is substantially resistant to movement under normal operating conditions along a direction approximately perpendicular to the longitudinal axis 44 of the shank 40. The stationary member 42 may include at least one fin 36 for engagement against the first or lower surface 26 of the member 20 having the aperture 22. The stationary member 42 is connected to the first end or insertion end 32 of the shank 40 in an approximately rigid or, more preferably, substantially rigid connection. The stationary member 42 is configured to hold the first end 32 in place and more particularly to hold the tip 35 of the first end 32 in a desired orientation as the shank 40 is inserted. More specifically, the stationary member 42 is coupled to the first end 32, and specifically the tip 35, in a substantially rigid connection to ensure that the tip 35 does not bend or fold during insertion into the aperture 22. The substantially rigid member 42 is configured to maintain its shape and be substantially free from flexing to maintain the best balance between easy insertion and resistance to extraction, as well as maintaining a tight connection with the member 20 as any looseness or movement of the fastener may cause vibrations, wear and noise.
The moveable member 50 is also connected to the tip 35 or first end 32. As the tip 35 may be made in a variety of sizes, shapes, and configurations, it is expected that the connection illustrated in
The fastener 30 includes a connecting member or upper hinge 54 that extends between the stationary member 42 and moveable member 50. The connecting member 54 is generally configured to limit the range of movement inward toward the stationary member 42 as well as outward away from the stationary member 42. By limiting the range of movement of the moveable member 50, proper retention force is maintained such that the moveable member, particularly the moveable end 62, does not fold outwardly and allow the fastener to loosen within the aperture 22. The connecting member 54 also improves resistance to extraction by limiting deformation of the fastener 30 and thereby easy removal of the deformed fastener. The connecting member 54 is generally configured to flex at the ends 55.
The stationary member 42, moveable member 50, tip 35, and connecting member 54 define an elongated cavity 56. The elongated cavity 56 extends away from the tip 35 approximately parallel to either the moveable member 50 or stationary member 42. As the elongated cavity approaches the connecting member, it is extends outwardly forming a small angled cavity 58. More specifically, the small angled cavity 58 follows the connecting member 54 and extends toward a thin point 64 on the moveable member 50 away from the stationary member 42. The angled cavity 58 is configured to allow the movable member 50 to be forced toward the stationary member 42 during insertion. More specifically, the angled cavity 58 as illustrated in
The moveable member 50, stationary member 42, and second end 34 define an open cavity 80. The open cavity 80 substantially angles outwardly away from the stationary member 44 following the connecting member 54 toward the second end 34. The open cavity 80 is also formed to allow the moveable member 50 to be displaced toward the stationary member 42. More specifically, the gap formed by the open cavity 80 provides space for the moveable member to move toward during insertion as illustrated in
The moveable member 50 may also include fins 36 which are formed to engage the lower or first surface 26 of the member 20 having an aperture 22. Again, the fins 36 may be of any size, shape, or configuration. The upwardly extending fins 36 cause the moveable member 50, when the fastener 30 experiences a removal force along the longitudinal axis 44, to be formed outward. More specifically, the fins 36 are configured in conjunction with the connecting member 54 to allow the moveable member 50, specifically the moveable end 62, to substantially move outward thereby increasing the necessary force required to remove the fastener 30 from the aperture 22. More specifically, as the moveable member 50 moves outward away from the stationary member, the edge of the aperture 23 formed by the point between the first surface 26 and inner surface 24 intersecting is stationary and as the moveable member 50 moves outwardly the edge approaches the more rigid plastic on the moveable member. Therefore, the fins 36 engaging the first surface 26 are moved so that the extraction force increases as the moveable member moves outward. More specifically, the fins 36 are generally stronger proximate to the moveable member as compared to the outward edge 38 of the fins 36.
In operation the fastener 30 is inserted into the aperture 22 along the longitudinal axis 44 as illustrated in the partially inserted fastener 30 in
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2909957 | Rapata | Oct 1959 | A |
3481242 | Topf | Dec 1969 | A |
3627362 | Brenneman | Dec 1971 | A |
4392278 | Mugglestone | Jul 1983 | A |
4551189 | Peterson | Nov 1985 | A |
4580964 | Repella | Apr 1986 | A |
D293880 | Takahashi | Jan 1988 | S |
5236431 | Gogolewski et al. | Aug 1993 | A |
5368261 | Caveney et al. | Nov 1994 | A |
5672038 | Eaton | Sep 1997 | A |
5694666 | Hamamoto | Dec 1997 | A |
5813810 | Izume | Sep 1998 | A |
5829937 | Morello et al. | Nov 1998 | A |
5851097 | Shereyk et al. | Dec 1998 | A |
5906465 | Sato et al. | May 1999 | A |
5907891 | Meyer | Jun 1999 | A |
5921510 | Benoit et al. | Jul 1999 | A |
6203364 | Chupak et al. | Mar 2001 | B1 |
6206331 | Keith et al. | Mar 2001 | B1 |
6449776 | Musal | Sep 2002 | B1 |
6449814 | Dinsmore et al. | Sep 2002 | B1 |
D467161 | Klenck et al. | Dec 2002 | S |
6536718 | Benito-Navazo | Mar 2003 | B2 |
6669426 | Detter et al. | Dec 2003 | B1 |
6719513 | Moutousis et al. | Apr 2004 | B1 |
20060239796 | Franks | Oct 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090191025 A1 | Jul 2009 | US |