The present invention is directed to a mounting device for mounting a fuel injector in a cylinder head of an internal combustion engine.
Fuel injectors for direct injection of fuel into the combustion chamber of a mixture-compressing, spark-ignited internal combustion engine are commonly held down in the cylinder head by a clamping claw which is bolted to the cylinder head of the engine. Such a clamping daw is described in Japanese Patent Application No. 08-31 25 03. The clamping claw presses on a shoulder of the fuel injector, thereby securing it in the location hole of the cylinder head. By using an appropriate tool, i.e., a dynamometric wrench, the clamping claw is tightened to an extent that the fuel injector cannot be pushed out of the cylinder head by the pressure prevailing in the combustion chamber of the engine.
In particular, the stressing effect of the clamping claw on the fuel injector is a disadvantage in known mounting devices. The flow of force created in the fuel injector results in deformations and thus to lift changes of the valve needle including jamming, as well as a compression and bending strain on the housing parts which are generally thin-walled and welded together at several points. In addition, each mounting operation, through a support shoulder for example, results in an enlargement of the radial dimension of the fuel injector and thus in an increase in the space required for mounting.
The mounting device for a fuel injector according to the present invention has the advantage over the related art that the fuel injector is pressed down by a holding down device situated between the fuel injector and a mounting element and thus no stresses occur due to excessively high bolting forces. Force is introduced into the fuel injector solely axially without a radial component. However, the holding down force may be adjusted in such a way that the fuel injector is held securely in the cylinder head.
It is a particular advantage that two asymmetrical trunnions of the sleeve of the fuel injector snap into two recesses of the holding down device, thus preventing the injector from twisting and ensuring that the holding down device is always mounted in the proper position.
The sleeve and the holding down device are advantageously manufactured from spring steel sheet by stamping, thereby showing good elasticity properties.
It is a further advantage that the mounting element may be secured to the cylinder head in a simple manner by using a bolt.
Fuel injector 1 is designed here in the form of a direct injecting fuel injector 1, which is mounted in a cylinder head 2 for direct injection of fuel into a combustion chamber of a mixture-compressing, spark-ignited engine (not shown). At its upstream end 3, fuel injector 1 has a plug-in connection to a fuel distribution line (not shown) which is sealed by a gasket 4 situated between the fuel distribution line and a feed line connection 5 of fuel injector 1. Fuel injector 1 has an electrical terminal 6 for the electrical contact for actuation of fuel injector 1.
Fuel injector 1 has an intermediate ring 8 situated in a location hole 7 of cylinder head 2 and used as a support for fuel injector 1 in location hole 7. Intermediate ring 8 is made of an elastic material and provides for centering of fuel injector 1 in location hole 7.
In order to secure fuel injector 1 in location hole 7 of cylinder head 2, a mounting device 9 is provided according to the present invention. Mounting device 9 is composed of a holding down device 10 which is supported both by a sleeve 11, which is attached to upstream end 3 of fuel injector 1 and rests on a metal shoulder 16 of fuel injector 1, and by a mounting element 12 which is fastened to cylinder head 2 by a bolt 13 extending through the mounting element. The axial length of the part of fuel injector 1 protruding over cylinder head 2 and the axial length of mounting element 12 are roughly the same.
Sleeve 11 is preferably stamped out of spring steel sheet and has two trunnions 14 in the exemplary embodiment which secure holding down device 10 to sleeve 11. Because trunnions 14 snap into appropriate recesses 15 of holding down device 10, they prevent lateral torsion of holding down device 10 and they serve as a precaution against shearing forces between fuel injector 1 and mounting device 9. Sleeve 11 is slitted in the area of electrical terminal 6 and thus interrupted over 90° for example. The manufacture from spring steel ensures the positive fit of sleeve 11 on fuel injector 1. In the exemplary embodiment, sleeve 11 is supported by metal shoulder 16 of fuel injector 1; the sleeve may however also be supported by a plastic shoulder 17 of fuel injector 1, positioned further upstream, for example.
Trunnions 14 of sleeve 11 may be situated asymmetrically on the perimeter of sleeve 11, so that the mounting position of holding down device 10 is clearly defined. The purpose of this measure is apparent from the perspective illustration of mounting device 10 in FIG. 2. Since holding down device 10 is designed asymmetrically for the prevention of shearing forces, accurate mounting in the proper position must be ensured, the part of holding down device 10, supported by mounting element 12, being partially bent up opposite the area resting on sleeve 11. Accurate mounting may be achieved by the asymmetrical positioning of trunnions 14 on sleeve 11, i.e., corresponding recesses 15 of holding down device 10.
Mounting device 9 may be secured on cylinder head 2, as illustrated in the exemplary embodiment, for example, by using bolt 13 which extends through mounting element 12 and is screwed into cylinder head 2. Bolt 13 is used at the same time for securing holding down device 10 to mounting element 12. There are other mounting methods, for example, by pressing in a bolt into an undercut volume of a recess in cylinder head 2 and subsequent mounting of holding down device 10 using a short screw.
Different aspects of mounting may be improved by the bent shape of flat holding down device 10 and the introduction of the force of mounting device 9 via sleeve 11 into fuel injector 1. Due to the flexibility of holding down device 10, which causes an elastic, as well as a partial plastic deformability of holding down device 10, the danger of damage to fuel injector 1 due to excessive pressure when an excessive tightening torque is applied during installation of mounting device 9 no longer exists and the tension of holding down device 10 with suitable selection of the material, as well as of the distance to mounting element 12 is still sufficiently high to press fuel injector 1 into cylinder head 2 against the pressure in the combustion chamber of the engine.
Also axial offsets, which may occur due to manufacturing tolerances of the individual components of fuel injector 1, as well as due to uneven heating during operation of the engine, are compensatable with no problem. Holding down device 10 and mounting element 12 are easy to manufacture and are easily secured to cylinder head 2 by using bolt 13. The tightening torque during installation no longer has to assume a definite value, but may vary in a certain range without creating malfunctions due to excessive or too weak tightening of bolt 13.
The present invention is not limited to the illustrated exemplary embodiment and is, for example, also applicable for fuel injectors 1 for injection into the combustion chamber of a self-igniting internal combustion engine.
Number | Date | Country | Kind |
---|---|---|---|
101 12 665 | Mar 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTDE02/00954 | 3/15/2002 | WO | 00 | 6/16/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0207514 | 9/26/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5566658 | Edwards et al. | Oct 1996 | A |
5697345 | Genter et al. | Dec 1997 | A |
6116218 | Sato et al. | Sep 2000 | A |
6318341 | Gmelin et al. | Nov 2001 | B1 |
6532939 | Ozeki | Mar 2003 | B2 |
Number | Date | Country |
---|---|---|
19735665 | Jan 1999 | DE |
57070952 | May 1982 | JP |
04171267 | Jun 1992 | JP |
06235366 | Aug 1994 | JP |
08312503 | Nov 1996 | JP |
11082241 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20040020469 A1 | Feb 2004 | US |