This application claims priority of French patent applications Nos. FR1905496 filed May 24, 2019 and FR1908869 filed Aug. 2, 2019, the content of each of which is hereby incorporated by reference herein in its entirety.
The invention relates to a fastening device for fastening a boot to a sliding board, in particular to a sliding board for sliding on snow, particularly to a snowboard. The invention also relates to a boot intended to be fastened to a sliding board. Lastly, the invention relates to a fastening system for snowboarding, comprising such a fastening device and such a boot.
Snowboarding, or snow surfing, consists in descending snow-covered pistes on a sliding board to which the user's two boots are fastened. To fasten a boot, use is generally made of a fastening device comprising a support fastened to the sliding board and several flexible straps fastened to the support at their ends and passing over the boot. The support, which is generally made of plastic, at least partially surrounds the sole, the rear and the sides of the boot. The fastening generally comprises two straps, one of which passes over the instep while the other passes over the front of the boot. These straps press the boot firmly onto the bottom of the support. Each strap is made up of two parts that can interact with one another via a tightening or clamping means so as to hold the foot in place securely.
To fasten a boot to the sliding board, the user thus generally has to position his foot on the bottom of the support of the fastening then successively clamp the straps of the fastening. This a fiddly operation that often requires the user to sit down in the snow to fit his boots to the sliding board. Yet it is an operation that has to be redone several times during a day's snowboarding since riding on the mechanical lifts generally requires at least one of the two feet to be removed from the board. The level of clamping obtained after each manipulation can vary. The user thus has to get used to snowboarding with a level of comfort that can vary each time the clamping and unclamping operation is performed. Moreover, existing straps are made of flexible plastic and can break, which can be particularly dangerous when the user is descending a ski piste at high speed.
Patent EP0885036 discloses fastenings commonly known as “step-in” fastenings, which can interact with a fastening device integrated under the sole of the boot. These fastenings make fitting the boots quicker when the sole is not clogged with snow. However, when there is snow or ice on the fastening device under the sole, this can make fitting the boots more difficult or even impossible. It is thus often necessary to thoroughly clean the sole so as to be able to fasten the boot on the sliding board.
Furthermore, with such a fastening system the foot is held in place via the sole and not the top of the foot or the instep as with conventional fastening systems, and users to not like how this type of fastening feels. To be specific, the transmission of forces from the foot to the sliding board is less accurate and the sensations felt by the user are not as good. The level of comfort afforded by such fastenings may also be adversely affected by compression points owing to the fastening mechanism, positioned under the foot of the user.
The invention aims to provide a fastening system for fastening a boot to a sliding board that overcomes the above drawbacks and improves the known prior art fastening systems.
More specifically, a first aim of the invention is a fastening device which is practical to use and makes it possible to fasten or release a boot on/from a sliding board quickly and easily.
A second aim of the invention is a fastening device allowing optimal transmission of the pushing action by a user to a sliding board to control the movement of the latter.
A third aim of the invention is a fastening device which is comfortable on the foot of the user.
A fourth aim of the invention is an automatic fastening device that can be used even when snow is liable to build up under the sole of a boot.
To this end, one subject of the invention is a fastening device for fastening a boot to a sliding board, comprising:
According to one mode of implementation, the lever comprises a gripping element for moving the lever from its first position into its second position in the direction of clamping.
According to one mode of implementation, the lever is arranged along a lateral side of the base, and the lever being able to interact with a retention element extending laterally from the boot.
According to one mode of implementation, the lever comprises a first bearing surface that can vertically retain the lateral retention element, the first bearing surface being in the form of a cam and/or the first bearing surface comprising a first portion intended to bear against the retention element when the lever is in its first position, the first bearing surface comprising a second portion intended to bear against the retention element when the lever is in its second position, the second portion being separate from the first portion.
According to one mode of implementation, the lever can rotate about a hinge pin, the hinge pin extending parallel to a transverse axis of the fastening device, the distance separating said first portion from the hinge pin being strictly greater than the distance separating said second portion from the hinge pin.
According to one mode of implementation, the lever comprises an opening, an edge of the opening forming said first bearing surface.
According to one mode of implementation, the first bearing surface of the lever is in the shape of an arc of a circle, off-centre relative to the hinge pin,
and/or
the first bearing surface of the lever comprises a row of notches, each notch defining a stable clamping position of the lever.
According to one mode of implementation, the base comprises a lateral side having a guide groove oriented and open forwards and upwards.
According to one mode of implementation, the lever comprises a second bearing surface forming a fitting ramp, the second bearing surface being intended to interact with the retention element so as to move the lever from an initial position into a third retracted position.
According to one mode of implementation, the fastening device comprises a return means, the return means exerting a force on the lever tending to move the lever from its third retracted position into its initial position.
According to one mode of implementation, the lever comprises a release handle, a force oriented downwards on the release handle tending to move the lever into its third retracted position.
According to one mode of implementation, the base comprises a stop means positioned at the front of the base, the stop means being able to interact with a mating element of the boot.
According to one mode of implementation, the fastening device comprises a first lever that can move relative to the base and a second lever that can move relative to the base, the first lever being able to interact with a first retention element connected to a boot, the second lever being able to interact with a second retention element connected to a boot, the first lever being able to move between a first retention position and a second clamping position, the second lever being able to move between a first retention position and a second clamping position, the first lever and the second lever being able to retain the boot in the base when they are in their first position, the first lever and the second lever being able to transmit a downward force on the first retention element and on the second retention element, respectively, when they are in their second position.
According to one mode of implementation, the first lever is rigidly secured to the second lever, and the first lever and the second lever can rotate about one and the same hinge pin, said hinge pin being oriented parallel to a transverse axis of the fastening device, said pin being arranged at the rear of a baseplate of the base.
The invention also relates to a boot for sport comprising a strap assembled slidingly, the strap surrounding an instep of the boot, the strap comprising a first free end, extending on a first side of the instep, and a second free end, extending on the other side of the instep, the first end comprising a first lateral retention element intended to interact with a first lever of a fastening device as previously defined and the second end comprising a second lateral retention element intended to interact with a second lever of the fastening device so as to clamp the boot against the fastening device.
According to one mode of implementation, the first retention element extends transversely in a zone of the boot delimited by a rear end of the boot, a lower edge of the boot and a point on the boot intended to be positioned at most at around 20 mm of an inner ankle bone of a user, and/or the second retention element extends transversely in a zone of the boot delimited by a rear end of the boot, a lower edge of the boot and a point on the boot intended to be positioned at most at around 20 mm of an outer ankle bone of a user.
The invention further relates to a fastening system comprising:
These aims, features and advantages of the present invention will be described in detail in the following description of a particular embodiment which is provided without intended limitation with reference to the attached figures, in which:
In this document, the longitudinal axis X of the fastening device is defined as the axis along which the foot of the user extends from the heel to the toes when the foot of the user is in place in the fastening device. The terms “front” and “rear” are defined in relation to the longitudinal axis X, the rear designating the heel end and the front designating the toe end. The transverse axis Y designates an axis perpendicular to the axis X and oriented from left to right as seen by the user. For the purposes of the description it is assumed that the device is mounted on a sliding board resting on horizontal ground. The axis X and the axis Y thus define a horizontal plane. The axis Z designates the vertical axis, perpendicular to the axes X and Y. The axis Z is oriented from bottom to top. The axes X, Y and Z constitute an orthogonal coordinate system.
With reference to
The first end 43A is provided with a first lateral retention element 44A. The second end 43B is provided with a second lateral retention element 44B. The two lateral retention elements 44A, 44B are therefore substantially positioned in a zone ZR (shown in
The sliding translational movement of the strap 42 may allow the boot to have a slight rolling movement from left to right about the axis X, when the boot is secured to the fastening device. In addition, the strap 42 may also have an additional degree of freedom of movement, for example a rotation from front to rear or vice versa to facilitate the rolling movement of the boot secured to the fastening device.
According to an alternative embodiment not shown, the retention elements 44A, 44B could be fastened not to a strap of the boot but directly to a cuff of the boot, to a sole of the boot or indeed to any other part of the boot, in particular on a reinforcement surrounding the heel. The retention elements would then be able to move relative to the rest of the boot only within the limits of the flexibility of the materials used to make the boot. The boot could possibly comprise reinforcements to limit the movement of the retention elements. According to this alternative embodiment, the retention elements may have a shape and/or position substantially identical to the shape and/or position of the retention elements which are integral with the strap, described above.
The fastening device 3 is in particular shown in perspective in
The base 10 is fastened to the sliding board, for example by means of screws screwed into the thickness of the sliding board, or by any other rapid locking/unlocking means known in the prior art. In particular, the base 10 or more precisely the lower plate of the base or baseplate 11 may have a circular opening (not shown), intended to receive a circular disc for retaining the base 10 on the sliding board. The base 10 may also, in a known manner, be easily positioned angularly relative to the board. The base 10 surrounds, at least partially, a sole, a rear portion and lateral sides of the boot 4. To this end, the base 10 comprises a baseplate 11 on which the lower face of the sole of the boot 4 is intended to bear. The baseplate extends parallel to the sliding board and is positioned bearing thereon. The base 10 further comprises two lateral flanks 12A, 12B or lateral sides 12A, 12B extending on either side of the baseplate 11, each in a plane parallel to the axes X and Z. The lateral flanks make it possible to block the boot laterally. The two lateral flanks are spaced apart from one another in such a way as to be able to accommodate the sole of the boot. The lateral flanks may have a height sufficient so as to bear on the sides of the sole of the boot. In particular, they may have a height that increases from front to rear. They are connected to one another at the rear by an arch 13 in the shape of an arc of a circle which is raised relative to the baseplate 11. The arch 13 is intended to receive the rear of the boot and may be positioned substantially at the same height as the user's Achilles tendon. The arch 13 forms a rear stop for the boot. As an alternative, the fastening device could comprise any other type of rear stop means to prevent a rearward movement of the boot. A rear opening is defined at the rear of the base by a lower contour of the arch, the two lateral flanks and the baseplate. When the boot is in place in the fastening device, the heel of the boot may optionally emerge through this rear opening. The arch 13 may be topped by a vertical reinforcement or spoiler (not shown), extending at the rear of the boot substantially along the axis Z, providing a bearing surface for the boot at the rear of the base.
The first lever 201 is arranged along a lateral side (in this case the right-hand lateral side) of the base 10 and towards the rear of the base. It can be seen in
The two levers 201, 301 can move between an initial position P0, a first position P1 and a second position P2. In the various alternatives shown, the initial position P0, for fitting the boot or in which the boot is ready for fitting, and the first position P1 referred to as the retention position are identical but they could also be different. In particular, the lever 201 and the lever 301 can rotate about one and the same hinge pin 14. The hinge pin 14 is oriented parallel to the transverse axis Y. The hinge pin 14 is arranged at the rear of the baseplate 11 of the base, in the lower portion of the base, in such a way as to pass underneath the sole of the boot when the sole bears on the baseplate 11. The hinge pin 14 may be guided in rotation by virtue of openings forming bearings in the base 10. The lever 201 is rigidly secured to the lever 301 via the hinge pin 14. More specifically, the lever 201 is rigidly secured to the hinge pin 14 via a first end 14A of the hinge pin 14 and the lever 301 is rigidly secured to the hinge pin 14 via a second end 14B of the hinge pin 14. The hinge pin 14 thus forms a connection means between the two levers 201, 301. Thus, a movement of the lever 201 causes an identical movement of the lever 301 and vice versa. The user may thus choose to manipulate either the lever 201 or the lever 301, depending on which movement is more comfortable for him.
As an alternative, the two levers could be independent of one another, i.e. they could be moved between their various positions independently of one another and they could move about two different transverse pins, oriented along the axis Y and mounted on each of the lateral flanks 12A, 12B of the base. If the two levers are independent, each foot is then held on the board by two independent attachment means.
As can be seen in
The lever 201 is shown in greater detail in
The bearing surface 204 is crenellated, i.e. it has a row of notches 205A, 205B, 205C, 205D, 205E positioned side by side. Each notch 205A, 205B, 205C, 205D, 205E has the shape of an arc of a circle, matching the cylindrical shape of the retention element 44A. Thus, each notch may define a stable retention and/or clamping position of the lever 201, in other words the forces exerted by the retention element on the lever cannot cause the lever to rotate, thereby opening the lever in the release direction D. More specifically, the selected inclination of the bearing surface 204 forming a cam surface and the position thereof relative to the hinge pin 14 of the lever 201 makes it possible, when a vertical upward force is applied by the retention element of the boot when snowboarding over the snow, to generate a force that tends to pivot the lever 201 rearwards, i.e. in the direction of closure and clamping. According to the embodiment shown, the first bearing surface 204 comprises five notches but this number could differ.
Two separate portions 206, 207 of the bearing surface 204 may be defined. The first portion 206 may be defined as the portion of the bearing surface corresponding to a first notch 205A and the second portion 207 may be defined as the portion of the bearing surface corresponding to a fourth notch 205D. As an alternative, the second portion could just as easily correspond to the notches 205B, 205C or 205E.
The first position P1, referred to as the retention position of the lever 201, is shown in particular in
As shown in
When the lever goes from the first position, referred to as the retention position P1, to the second position, referred to as the clamping position P2, the lever 201 and in particular the cam surface 204 exerts a force downwards and rearwards on the retention element 44A causing said retention element 44A to move downwards, in the direction of the baseplate 11 of the base 10. The retention element moves in a direction substantially perpendicular to the plane in which the sliding board and/or the baseplate 11 extends. The retention element 44A being itself also guided in a guide groove 15 in the base, inclined rearwards, as explained below, this retention element ultimately moves downwards and rearwards during clamping, when the lever 201 is rotated rearwards. Thus, the retention element 44A moves closer to the hinge pin 14. The strap 42 is stretched parallel to its direction of sliding, i.e. rearwards and downwards. The movement of the retention element thus causes clamping of the strap on the instep of the boot towards the base. The boot is pressed against the base and firmly held in place by the strap stretched over the instep 41. Advantageously, the lever may be able to move the retention element downwards, in the vertical direction, by a distance greater than or equal to 10 mm, in particular around 20 mm, when the lever is moved from its first position, referred to as the retention position P1, into its second position, referred to as the clamping position P2, the retention element thus moving closer to the upper face of the base and the lower face of the sole of the boot. In a preferred example, when the lever is in its first position, referred to as the retention position P1, the retention element is at around 70 mm from the lower face of the sole and hence from the upper face of the base 10. Then, when the lever is in its second position P2, referred to as the clamping position, the retention element is then at around 50 mm from the lower face of the sole and from the upper face of the base. The central axis of the retention element 44A is then located approximately at a distance of between 50 and 85 mm from the heel, preferably between 70 and 80 mm from the heel of the boot.
Incidentally, in the particular case where the retention elements are not fastened to a strap of the boot but to any other part such as the cuff of the boot, the rearward rotation of the lever results in a downward force being transmitted on the cuff. This force is transmitted to the sole of the boot which is then compressed against the baseplate 11 of the fastening device. The passage from the retention position P1 to the clamping position P2 is performed manually by the user by manually actuating the lever. This transition is obtained by manipulating the lever rearwards, in the direction of clamping S, as shown in
Several clamping positions P2 may be achieved depending on the desired level of clamping on the boot. The more the lever 201, which bears the cam surface for retention and clamping, is pivoted rearwards, the higher the level of clamping, i.e. the more the retention element of the boot moves downwards and moves closer to the upper surface of the base. Thus, the strap 42 is clamped increasingly firmly against the upper part of the boot in the area of the instep, the sole then being pressed against the baseplate 11 of the fastening element.
According to a second embodiment of the invention, shown in
With reference to
When the lever forming a cam is in its initial position P0 for fitting the boot, the lever 201 is juxtaposed with the guide groove 15, although the retention element cannot be engaged therein without the lever 201 being moved. In the first position referred to as the retention position P1, or in the second position referred to as the clamping position P2, or in any intermediate position between the first position P1 and the second position P2, the lever is also juxtaposed with the guide groove 15, the retention element being then engaged in the guide groove 15. Thus, the lever 201 forming a cam laterally covers at least a portion of the guide groove 15 (i.e. it covers at least a portion of the guide groove according to a transverse projection of the lever 201 on the lateral flank 12A which includes the guide groove 15). To be specific, the retention element 44A of the strap 42 extends in the transverse direction beyond the lateral flank of the base and comes into interference with an upper edge of the lever when the latter is in its first position.
To allow the engagement, or in other words the fitting, of the boot in the fastening device or the release of the boot from the fastening device, the lever can be moved into a third position P3, referred to as the retracted position, which is different to the initial position P0, the first position P1 and the second position P2. This retracted position P3 is shown in particular in
The third position P3, referred to as the retracted position of the lever, corresponds to a position in which the lever is pivoted forwards from the initial position P0. The initial position of the lever P0 is the position in which the lever is prior to fitting of the boot. According to the embodiment shown, the initial position of the lever P0 is identical to the retention position P1 of the lever. The initial position P0 differs from the retention position P1 by the fact that the lateral retention element 44A or lug is not engaged in the groove 15 and hence is not bearing against the bearing surface 204 in the initial position P0, whereas it is in the retention position P1. In the initial position P0, the boot is still out of the fastening device. Compared to the retention position P1 or compared to the initial position P0, the retracted position P3 is obtained by rotating the lever in the direction of rotation for release D, as shown in
To allow the lever to be rotated from the initial position P0 into the third position P3, the boot not being fitted in the fastening device, the lever 201 forming a cam comprises a second bearing surface 208 or fitting ramp, arranged on an upper edge of the lever. The second bearing surface 208 is intended to interact with the retention element 44A of the boot so as to move the lever into its third position and allow automatic fitting of the boot in the fastening device. More particularly, as shown in
As shown in
At rest, when the boot is not engaged in the fastening, the lever 201 does not pivot rearwards owing to the mating of shapes produced respectively on the lever 201, on the inner face, and on the lateral wall of the base, on the outer face, forming an end stop. When the boot is fitted, the fitting force is sufficient to overcome this end stop.
To allow the boot to be released from the fastening device, the lever further comprises a release pedal or handle 214, for manually pivoting the lever into its third position, referred to as the retracted position P3. This release handle 214 could also be pivoted with the foot. The release handle is in the form of a protrusion rigidly secured to the body of the lever and extending outwards from the fastening device, parallel to the transverse axis Y. It may have a substantially rectangular shape. As shown in
In the embodiments shown, the release handle forms a single piece with the lever bearing the cam surface, but it would not be departing from the scope of the invention if this release handle were formed by an element other than the lever bearing the cam, interacting with this lever to rotate it. Furthermore, the gripping element 216 and the release handle 214 or pedal have been presented as two separate elements. As an alternative, these two elements could form one and the same component, for example taking the form of a handle extending parallel to the transverse axis Y. The user could then pull upwards on this handle so as to pivot the lever in the direction of clamping S, or conversely, could push downwards on this handle so as to pivot the lever in the direction of release D.
With reference to
In other embodiments of the invention, the lug 18 and cut-out 47 elements could be reversed, i.e. the lug could be positioned on the lateral sides of the boot, in the front zone thereof, and the cut-out could be positioned in the front lateral walls of the fastening device. Any other attachment means, such as hooks or mating shapes, could be envisaged to attach the front portion of the boot to the fastening device, this attachment allowing at least vertical retention of the front portion of the boot. Incidentally, when the stop means 17 interacts with the lug 18, the movement of the boot relative to the fastening device is guided. In particular, the boot describes a rotational movement in which the axis of rotation corresponds to the axis AT1. Thus, it could be possible to envisage doing away with the guide groove 15 or widening the latter since guidance would be ensured by the interaction of the stop means 17 with the lug 18.
As clearly shown in
Thus, the presence of less rigid lateral portions 112A, 112B allows the boot to pivot slightly about a longitudinal axis, with a rolling movement, while remaining generally firmly clamped against the base. To be specific, when the boot is retained and clamped in the fastening device, the strap 42 has a position which is fixed relative to the fastening device, owing to the fact that the lateral retention elements 44A, 44B mounted on the strap 42 are rigidly secured to the fastening device. It is therefore the rest of the boot, excluding the strap, which can move relative to the strap and to the fastening device, in particular can rotate, causing a rolling movement about the axis X. This is possible owing to the ability of the strap 42 to slide relative to the cuff of the boot. The user may thus freely modify or adjust his bearing on the sliding board, while the foot remains firmly clamped. He thus gains even better control over his trajectory. In particular, the user gets the same sensations as with a conventional fastening in which the boot is retained only by two straps fastened to the fastening device and independent of the boot, and in particular the fastening device according to the invention allows the boot to perform a rolling movement relative to the base, as in the conventional fastenings mentioned above.
By virtue of the invention, the user can easily attach his boot to the sliding board in such a way that the sliding board is retained on his foot and cannot come loose. This operation does not require the user to use his hands since all that is required is to engage the lever by bringing his foot to the fitting ramp as described above. Before the boot is fitted, the strap is only secured to the boot. After attaching the boot in the fastening device, the strap becomes secured to the base. Then, a single gesture on the gripping element 216 allows the user to adjust the level of clamping of his foot against the sliding board. Once the lever has been clamped, the strap is secured to the fastening device. Depending on the compromise between comfort of use and precision, the user can pull more or less forcefully on the lever bearing the cam surface, i.e. pivot it to a greater or lesser degree from the first position, referred to as the retention position P1, into the second position, referred to as the clamping position P2. When the first bearing surface has only a few notches, the user can easily find a level of clamping that suits him by identifying the notch on which the retention element of the boot, connected to the strap, must stop. His boot is clamped from above, i.e. the strap exerts a force on the user's instep so as to firmly press the boot on the bottom of the fastening device. The rigidity of the materials from which the body of the boot is made thus has no bearing on the quality of clamping obtained. It is thus possible to obtain an automatic fitting system, as well as a boot which is particularly comfortable, along with precise, efficient clamping of the boot against the sliding board.
When snow accumulates under the sole of the boot or on the fastening device, the user can still fasten his boot to the sliding board without having to clear off the snow. To this end, the user manipulates the lever in such a way as to obtain a given resistance. Lastly, the force produced to manipulate the lever is directly correlated to the force applied by the strap on the instep of the boot. Through use, the user can thus easily find the level of clamping that suits him. Later, if the snow that has got in between the boot and the fastening device should melt or become compacted, thus modifying the level of clamping of the strap, the user can easily adjust the level of clamping of the lever.
Incidentally, in the particular case in which the retention elements 44A, 44B are fastened directly to the cuff, to the sole or to any other element of the boot, clamping of the levers makes it possible to compress the sole to a greater or lesser extent against the sliding board. Greater or lesser compression of the sole makes it possible to adjust the sensations felt by the user in the soles of the feet. Moreover, when the retention elements are fastened to a cuff made of sufficiently flexible material, the cuff can deform under the effect of the force exerted by each of the levers and a degree of clamping of the foot can be obtained. The clamping thus obtained can be modulated by adapting the rigidity of the cuff and the position of the retention elements on the cuff. The advantage of being able to simply fasten the boot to the fastening device without having to remove the snow accumulated between the sole and the fastening device is obtained even when the retention elements are secured to the cuff, the sole or any other element of the boot.
Then, to remove or release the boot from the fastening device, a single gesture is enough since all that is required is to press on the release handle of the lever bearing the cam to make the lever pivot forwards, for example using the release handle 214. Pressing can be performed manually or for example with the other foot, if it is free of its own fastening device. By virtue of the connection between the two levers, right and left, 201 and 301 by means of the connection bar 14, a single action on one of the levers makes it possible to open the two levers simultaneously to allow the boot to be released.
Thus, the lever consists of a single component combining the functions of automatic fitting of the boot, retention of the boot, unclamped, against the sliding board, clamping of the boot against the sliding board, and lastly an interface with the user, since for clamping and release the user manipulates the lever directly, not another element connected to the lever. According to the embodiment of the invention described, the lever is articulated in rotation on the fastening device and comprises a cam surface, a fitting ramp, a gripping zone or gripping element for clamping the boot against the fastening device, in particular clamping the strap connected to the boot against the instep, and a release handle or release pedal for releasing the boot from the fastening device.
The lever shown in the various embodiments is optimized and simple since it combines all the elements mentioned above for performing all the functions mentioned above. However, it would not be departing from the scope of the invention if the main lever were to bear only the cam surface and the fitting ramp and if the gripping zone and/or the gripping handle were elements distinct from this main lever, mounted on the base and interacting with this main lever for the purpose of clamping and/or release, respectively.
Various alternative embodiments of the invention will now be described.
As shown in
According to another alternative not shown, the fastening device could comprise just a single lever located at the rear of the fastening device. This lever would comprise a lever that can move about a hinge pin oriented longitudinally along the axis X, this lever having a first bearing surface or cam surface, a second bearing surface or fitting ramp and two gripping zones, one for actuating the lever in the direction of clamping and the other for actuating the lever in the direction of release. The boot would then further comprise a strap covering the instep of the boot, the rear ends of which would be connected to one another by a connection, itself having a retention element located in the rear zone of the boot and intended to interact with the lever and in particular with the cam surface of the lever. This retention element, by interacting with the lever, would make it possible to clamp the strap against the instep of the boot towards the base when the lever is moved from its first position, referred to as the retention position, into its second position, referred to as the clamping position, by acting on the gripping element for clamping. According to this alternative, the vertical rear wall 13 of the base would have a substantially vertical guide groove or slot, emerging and opening out upwards, intended to receive and guide the retention element.
Incidentally, when the fastening device has two levers synchronized by a hinge pin, as described above, one of the two levers could be simplified and for example, one of the two levers could in this case not comprise the release handle 214.
The invention thus has the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
1905496 | May 2019 | FR | national |
1908869 | Aug 2019 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4177584 | Beyl | Dec 1979 | A |
5520406 | Anderson | May 1996 | A |
5577757 | Riepl | Nov 1996 | A |
6050590 | Domon | Apr 2000 | A |
6053524 | Laughlin | Apr 2000 | A |
6076285 | Caeran et al. | Jun 2000 | A |
6099018 | Maravetz et al. | Aug 2000 | A |
6347805 | Maravetz et al. | Feb 2002 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6443465 | Maravetz et al. | Sep 2002 | B1 |
6557884 | Maravetz et al. | May 2003 | B1 |
9873033 | Debney | Jan 2018 | B2 |
20020000708 | Gignoux | Jan 2002 | A1 |
20020089150 | Musho et al. | Jul 2002 | A1 |
20030164605 | Maravetz et al. | Sep 2003 | A1 |
20030197350 | Laughlin | Oct 2003 | A1 |
20040017063 | Gignoux | Jan 2004 | A1 |
20040155433 | Sanders | Aug 2004 | A1 |
20040232658 | Poscich | Nov 2004 | A1 |
20170216710 | Debney | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
0885036 | Sep 2007 | EP |
9847582 | Oct 1998 | WO |
02092176 | Nov 2002 | WO |
2007027017 | Mar 2007 | WO |
2012058451 | May 2012 | WO |
Entry |
---|
French Search Report and Written Opinion dated Mar. 23, 2020 in counterpart application No. FR 1908869; w/English machine translation (total 14 pages). |
Number | Date | Country | |
---|---|---|---|
20200368603 A1 | Nov 2020 | US |