The present invention relates generally to electronic faucets. More particularly, the present invention relates to capacitive sensing systems and methods for operating a faucet.
It is known to provide faucets with pullout sprayheads or wands fluidly connected to flexible water supply tubes and releasably coupled to a delivery spout. Such pullout wands often provide multiple delivery modes including a spray mode and a stream mode. In the spray mode, water is discharged from a plurality of outlets in a spray pattern. In the stream mode, water is discharged in a single, relatively concentrated stream.
It is also known to provide electronic faucets to control water flow. Some electronic faucets provide capacitive sensing to control water flow where a capacitive sensor is coupled to the delivery spout and/or a manual valve handle. For example, an illustrative capacitive sensing faucet permits a user to turn water flow on and off by merely tapping the spout. The faucet may distinguish between a tap on the spout to turn the water flow on and off, and a longer grasping or grab of the spout, for example, to swing it from one basin of a sink to another. Such a faucet may also utilize the manual valve handle for touch control, which illustratively distinguishes between a grasping or grab of the handle to adjust water flow rate and/or temperature, and merely tapping the handle to toggle water flow off or on. Such an illustrative faucet is detailed in U.S. Patent Application Publication No. 2010/0170570, the disclosure of which is expressly incorporated by reference herein.
According to an illustrative embodiment of the present disclosure, an electronic faucet includes a spout hub, a manual valve handle operably coupled to the spout hub, and a pullout wand removably supported by the spout hub. A passageway conducts water through the hub to the pullout wand. An electrically operable valve is fluidly coupled to the passageway, and a manual valve is fluidly coupled to the passageway in series with the electrically operable valve, wherein the manual valve handle controls the manual valve. A controller controls operation of the electrically operably valve and is electrically coupled to the manual valve handle of the faucet. The spout hub is capacitively coupled to the manual valve handle, and the pullout wand is capacitively coupled to the spout hub when docked with the spout hub. As such, the pullout wand is touch sensitive when docked with the spout hub.
According to another illustrative embodiment of the present disclosure, an electronic faucet includes a spout hub and a pullout wand removably supported by the spout hub. The pullout wand is movable from a docked position coupled with the spout hub and an undocked position removed from the spout hub. A manual valve includes a handle and is operably coupled to the spout hub. An electrically operable valve is in fluid communication with the manual valve. A tube is slidably received within the spout hub and fluidly couples the pullout wand to the electrically operable valve. A capacitive sensor is in electrical communication with the pullout wand when in the docked position. A controller is in electrical communication with the capacitive sensor. The pullout wand is touch sensitive when in the docked position and is not touch sensitive when in the undocked position.
According to a further illustrative embodiment of the present disclosure, an electronic faucet comprises a delivery spout including a receiver. A pullout wand is movable from a docked position coupled with the receiver of the delivery spout and an undocked position removed from the receiver of the delivery spout. A wand capacitive coupling is provided between the pullout wand and the delivery spout when the pullout wand is in the docked position. A capacitive sensor is in electrical communication with the pullout wand through the wand capacitive coupling.
According to another illustrative embodiment of the present disclosure, an electronic faucet includes a delivery spout including a receiver. A pullout wand is movable from a docked position coupled with the receiver of the delivery spout and an undocked position removed from the receiver of the delivery spout. A capacitive sensor is operably coupled to the pullout wand. The output from the capacitive sensor provides an indication of at least one of touching the pullout wand when in the docked position, and a change between the docked position and the undocked position of the pullout wand. Water flow through the pullout wand is controlled based upon the output from the capacitive sensor.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description of the drawings particularly refers to the accompanying figures in which:
The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention.
Referring initially to
An outlet conduit 36 is illustratively coupled to the base 29 of the waterway assembly 25 and is fluidly coupled to an actuator driven, illustratively electrically operable valve 38, positioned within a control unit 40 positioned below the sink deck 16. A flexible inlet tube 42 fluidly couples the pullout wand 20 to the actuator driven valve 38. The flexible inlet tube 42 defines a water passageway for delivering water through the spout hub 12 to the pullout wand 20. Further, the flexible inlet tube 42 is slidably received within the spout hub 12 to permit movement of the pullout wand 20 from a docked position (
While the following description details a pullout wand 20 removably coupled to a delivery spout 11 for illustrative purposes, it should be appreciated that the present invention may find equal applicability with other fluid delivery devices, including with side sprayers typically used with kitchen faucets having delivery spouts mounted separately on the sink deck 16.
With reference to
The pullout wand 20 may include a user interface defined by a first input portion 54 proximate a first end of a rocker switch 56, and a second input portion 58 proximate a second end of the rocker switch 56. Depressing the first input portion 54 causes the pullout wand 20 to dispense an aerated stream of water. Depressing the second input portion 58 causes the pullout wand 20 to dispense a spray of water. The user interface is further defined by a third input portion 62 at a button 64. Depressing the third input portion 62 at button 64 provides an increased flow rate of water to be dispensed from the pullout wand 20.
Additional details of an illustrative pullout wand 20 are provided in US Patent Application Publication No. 2011/0088784, the disclosure of which is expressly incorporated by reference herein.
As noted above, the hot water supply 30 and the cold water supply 32 may be fluidly connected directly to the actuator driven valve 38 positioned below the sink deck 16. The actuator driven valve 38 is illustratively controlled electronically by a controller 70, also positioned within the control unit 40 below the sink deck 16. As such, the flow of water through the faucet 10 may be controlled using an output from a capacitive sensor 72.
The output signal from capacitive sensor 72 may be provided to the controller 70 for controlling the actuator driven valve 38, which thereby controls flow of water to the pullout wand 20 from the hot and cold water supplies 30 and 32. By sensing capacitance changes with capacitive sensor 72, the controller 70 can make logical decisions to control different modes of operation of faucet 10, such as described in U.S. Pat. No. 7,537,023; U.S. Pat. No. 7,690,395; U.S. Pat. No. 7,150,293; U.S. Pat. No. 7,997,301; and PCT International Application Serial Nos. PCT/US08/01288 and PCT/US08/13598, the disclosures of which are all expressly incorporated herein by reference.
With reference to
The manual valve 24 is supported by the base 29 of the waterway assembly 25 and is in fluid communication with the hot and cold water inlet conduits 26 and 28. A brass bonnet nut or sleeve 83 couples to the mixing valve 24 and includes a lower end threadably coupled to the cap 80. A contact assembly 85 extends above the mixing valve 24 and is in electrical communication with the handle 34. A bonnet cap 87 is threadably supported by an upper end of the bonnet nut 83 below the handle 34 and secures the mixing valve 24 to the bonnet nut 83. The contact assembly 85 provides electrical communication between the handle 34 and the bonnet nut 83 through the bonnet cap 87.
With reference to
With reference to
As further detailed herein, the controller 70 in connection with the capacitive sensor 72 and associated software causes the wand 20 to be touch sensitive when docked with the hub 12. In an illustrative embodiment, when a user taps the outer shell 44 of the wand 20 when docked to the hub 12 (
In one illustrated embodiment, the capacitive sensor 72 is a CapSense capacitive sensor available from Cypress Semiconductor Corporation. In this illustrated embodiment, the capacitive sensor 72 converts capacitance into a count value. The unprocessed count value is referred to as a raw count. Processing the raw count signal determines whether the handle 34, hub 12 or pullout wand 20 have been touched and whether the pullout wand 20 is docked or undocked as discussed below. It is understood that other suitable capacitive sensors 72 may be used.
In an illustrated embodiment, a tap of any of the components (e.g., the handle 34, the hub 12, or the pullout wand 20) by the user will change the state of fluid flow. A weak grab where the user grabs onto the pullout wand 20 will not change the fluid flow state. Referring now to
Once the water is on as illustrated at block 502, the controller 70 takes no action and keeps the water on if it detects either a weak grab of the pullout wand 20, a strong grab of the control handle 34, or that the wand 20 is undocked. The controller 70 will change the water flow state and turn the water off upon detecting a tap of any of the faucet components including the handle 34, the hub 12, or the pullout wand 20. The controller 70 will also turn the water off upon detecting that the pullout wand 20 is docked indicating that the user has replaced the pullout wand 20 into the receiver 18.
In an illustrated embodiment, the controller 70 also determines whether a hub 12 of the faucet has been grabbed or tapped. Plots for the hub 12 being grabbed or tapped are similar to
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
The present application claims priority to U.S. provisional patent application Ser. No. 61/636,373, filed Apr. 20, 2012, the disclosure of which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2337321 | Freeman | Dec 1943 | A |
2991481 | Book | Jul 1961 | A |
3081594 | Atkins et al. | Mar 1963 | A |
3151340 | Teshima | Oct 1964 | A |
3254313 | Atkins et al. | May 1966 | A |
3314081 | Atkins et al. | Apr 1967 | A |
3406941 | Ichimori et al. | Oct 1968 | A |
3588038 | Tanaka | Jun 1971 | A |
3651989 | Westrich | Mar 1972 | A |
3672479 | Schwertfeger et al. | Jun 1972 | A |
3685541 | Braucksick et al. | Aug 1972 | A |
3705574 | Duncan | Dec 1972 | A |
3756456 | Georgi | Sep 1973 | A |
3762440 | Bryant | Oct 1973 | A |
3799171 | Patel | Mar 1974 | A |
3987819 | Scheuermann | Oct 1976 | A |
4172381 | Aigner | Oct 1979 | A |
4185336 | Young | Jan 1980 | A |
4200018 | Sekiwa | Apr 1980 | A |
4201518 | Stevenson | May 1980 | A |
4280530 | Yi | Jul 1981 | A |
4331292 | Zimmer | May 1982 | A |
4337388 | July | Jun 1982 | A |
4359186 | Kiendl | Nov 1982 | A |
4406313 | Bennett et al. | Sep 1983 | A |
4407444 | Knebel et al. | Oct 1983 | A |
4409694 | Barrett et al. | Oct 1983 | A |
4410791 | Eastep | Oct 1983 | A |
4420811 | Tarnay et al. | Dec 1983 | A |
4421269 | Ts'ao | Dec 1983 | A |
4424767 | Wicke et al. | Jan 1984 | A |
4429422 | Wareham | Feb 1984 | A |
4436983 | Solobay | Mar 1984 | A |
4439669 | Ryffel | Mar 1984 | A |
4450829 | Morita et al. | May 1984 | A |
4459465 | Knight | Jul 1984 | A |
4503575 | Knoop et al. | Mar 1985 | A |
4532962 | Campau | Aug 1985 | A |
4537348 | Gossi | Aug 1985 | A |
4541562 | Zukausky | Sep 1985 | A |
4554688 | Puccerella | Nov 1985 | A |
4563780 | Pollack | Jan 1986 | A |
4567350 | Todd, Jr. | Jan 1986 | A |
4581707 | Millar | Apr 1986 | A |
4584463 | Klages et al. | Apr 1986 | A |
4604515 | Davidson | Aug 1986 | A |
4604764 | Enzo | Aug 1986 | A |
4606325 | Lujan | Aug 1986 | A |
4611757 | Saether | Sep 1986 | A |
4628902 | Comber | Dec 1986 | A |
4638147 | Dytch et al. | Jan 1987 | A |
4674678 | Knebel et al. | Jun 1987 | A |
4680446 | Post | Jul 1987 | A |
4682581 | Laing et al. | Jul 1987 | A |
4682728 | Oudenhoven et al. | Jul 1987 | A |
4688277 | Kakinoki et al. | Aug 1987 | A |
4693415 | Sturm | Sep 1987 | A |
4700884 | Barrett et al. | Oct 1987 | A |
4700885 | Knebel | Oct 1987 | A |
4709728 | Ying-Chung | Dec 1987 | A |
4713525 | Eastep | Dec 1987 | A |
4735357 | Gregory et al. | Apr 1988 | A |
4738280 | Oberholtzer | Apr 1988 | A |
4742456 | Kamena | May 1988 | A |
4750472 | Fazekas | Jun 1988 | A |
4753265 | Barrett et al. | Jun 1988 | A |
4756030 | Juliver | Jul 1988 | A |
4757943 | Sperling et al. | Jul 1988 | A |
4768705 | Tsutsui et al. | Sep 1988 | A |
4786782 | Takai et al. | Nov 1988 | A |
4798224 | Haws | Jan 1989 | A |
4808793 | Hurko | Feb 1989 | A |
4832259 | Vandermeyden | May 1989 | A |
4854498 | Stayton | Aug 1989 | A |
4869287 | Pepper et al. | Sep 1989 | A |
4869427 | Kawamoto et al. | Sep 1989 | A |
4870986 | Barrett et al. | Oct 1989 | A |
4872485 | Laverty | Oct 1989 | A |
4875623 | Garris | Oct 1989 | A |
4893653 | Ferrigno | Jan 1990 | A |
4896658 | Yonekubo et al. | Jan 1990 | A |
4901915 | Sakakibara | Feb 1990 | A |
4909435 | Kidouchi et al. | Mar 1990 | A |
4914758 | Shaw | Apr 1990 | A |
4916613 | Lange et al. | Apr 1990 | A |
4917142 | Laing et al. | Apr 1990 | A |
4923116 | Homan | May 1990 | A |
4930551 | Haws | Jun 1990 | A |
4936289 | Peterson | Jun 1990 | A |
4936508 | Ingalz | Jun 1990 | A |
4941608 | Shimizu et al. | Jul 1990 | A |
4945942 | Lund | Aug 1990 | A |
4945943 | Cogger | Aug 1990 | A |
4955535 | Tsutsui et al. | Sep 1990 | A |
4965894 | Baus | Oct 1990 | A |
4967794 | Tsutsui et al. | Nov 1990 | A |
4969598 | Garris | Nov 1990 | A |
4970373 | Lutz et al. | Nov 1990 | A |
4971106 | Tsutsui et al. | Nov 1990 | A |
4998673 | Pilolla | Mar 1991 | A |
5009572 | Imhoff et al. | Apr 1991 | A |
5020127 | Eddas et al. | May 1991 | A |
5033508 | Laverty | Jul 1991 | A |
5033715 | Chiang | Jul 1991 | A |
5040106 | Maag | Aug 1991 | A |
5042524 | Lund | Aug 1991 | A |
5056712 | Enck | Oct 1991 | A |
5057214 | Morris | Oct 1991 | A |
5058804 | Yonekubo et al. | Oct 1991 | A |
5063955 | Sakakibara | Nov 1991 | A |
5086526 | Van Marcke | Feb 1992 | A |
5095945 | Jensen | Mar 1992 | A |
5105846 | Britt | Apr 1992 | A |
5124934 | Kawamoto et al. | Jun 1992 | A |
5125433 | DeMoss et al. | Jun 1992 | A |
5129034 | Sydenstricker | Jul 1992 | A |
5133089 | Tsutsui et al. | Jul 1992 | A |
5139044 | Otten et al. | Aug 1992 | A |
5143049 | Laing et al. | Sep 1992 | A |
5148824 | Wilson et al. | Sep 1992 | A |
5170361 | Reed | Dec 1992 | A |
5170514 | Weigert | Dec 1992 | A |
5170816 | Schnieders | Dec 1992 | A |
5170944 | Shirai | Dec 1992 | A |
5174495 | Eichholz et al. | Dec 1992 | A |
5175892 | Shaw | Jan 1993 | A |
5183029 | Ranger | Feb 1993 | A |
5184642 | Powell | Feb 1993 | A |
5187816 | Chiou | Feb 1993 | A |
5202666 | Knippscheer | Apr 1993 | A |
5205318 | Massaro et al. | Apr 1993 | A |
5206963 | Wiens | May 1993 | A |
5217035 | Van Marcke | Jun 1993 | A |
5224509 | Tanaka et al. | Jul 1993 | A |
5226629 | Millman et al. | Jul 1993 | A |
5261443 | Walsh | Nov 1993 | A |
5262621 | Hu et al. | Nov 1993 | A |
5265318 | Shero | Nov 1993 | A |
5277219 | Lund | Jan 1994 | A |
5287570 | Peterson et al. | Feb 1994 | A |
5315719 | Tsutsui et al. | May 1994 | A |
5323803 | Blumenauer | Jun 1994 | A |
5325822 | Fernandez | Jul 1994 | A |
5334819 | Lin | Aug 1994 | A |
5341839 | Kobayashi et al. | Aug 1994 | A |
5348231 | Arnold et al. | Sep 1994 | A |
5351712 | Houlihan | Oct 1994 | A |
5358177 | Cashmore | Oct 1994 | A |
5361215 | Tompkins et al. | Nov 1994 | A |
5362026 | Kobayashi et al. | Nov 1994 | A |
5385168 | Lund | Jan 1995 | A |
5400961 | Tsutsui et al. | Mar 1995 | A |
5408578 | Bolivar | Apr 1995 | A |
5409037 | Wheeler et al. | Apr 1995 | A |
5419930 | Schucker | May 1995 | A |
5429272 | Luigi | Jul 1995 | A |
5431302 | Tulley et al. | Jul 1995 | A |
5433342 | Luro | Jul 1995 | A |
5437003 | Blanco | Jul 1995 | A |
RE35018 | Homan | Aug 1995 | E |
5438642 | Posen | Aug 1995 | A |
5467967 | Gillooly | Nov 1995 | A |
5479558 | White et al. | Dec 1995 | A |
5482250 | Kodaira | Jan 1996 | A |
5504306 | Russell et al. | Apr 1996 | A |
5504950 | Natalizia et al. | Apr 1996 | A |
5511579 | Price | Apr 1996 | A |
5511723 | Eki et al. | Apr 1996 | A |
5540555 | Corso et al. | Jul 1996 | A |
5550753 | Tompkins et al. | Aug 1996 | A |
5564462 | Storch | Oct 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5570869 | Diaz et al. | Nov 1996 | A |
5572985 | Benham | Nov 1996 | A |
5575424 | Fleischmann | Nov 1996 | A |
5577660 | Hansen | Nov 1996 | A |
5584316 | Lund | Dec 1996 | A |
5586572 | Lund | Dec 1996 | A |
5588636 | Eichholz et al. | Dec 1996 | A |
5595342 | McNair et al. | Jan 1997 | A |
5603344 | Hall | Feb 1997 | A |
5610589 | Evans et al. | Mar 1997 | A |
5622203 | Givler et al. | Apr 1997 | A |
5623990 | Pirkle | Apr 1997 | A |
5627375 | Hsieh | May 1997 | A |
5682032 | Philipp | Oct 1997 | A |
5694653 | Harald | Dec 1997 | A |
5730165 | Philipp | Mar 1998 | A |
5735291 | Kaonohi | Apr 1998 | A |
5758688 | Hamanaka et al. | Jun 1998 | A |
5769120 | Laverty et al. | Jun 1998 | A |
5775372 | Houlihan | Jul 1998 | A |
5784531 | Mann et al. | Jul 1998 | A |
5790024 | Ripingill et al. | Aug 1998 | A |
5812059 | Shaw et al. | Sep 1998 | A |
5813655 | Pinchott et al. | Sep 1998 | A |
5819366 | Edin | Oct 1998 | A |
5823229 | Bertrand et al. | Oct 1998 | A |
5829467 | Spicher | Nov 1998 | A |
5829475 | Acker | Nov 1998 | A |
5845844 | Zosimodis | Dec 1998 | A |
5855356 | Fait | Jan 1999 | A |
5857717 | Caffrey | Jan 1999 | A |
5868311 | Cretu-Petra | Feb 1999 | A |
5872891 | Son | Feb 1999 | A |
5941275 | Laing | Aug 1999 | A |
5944221 | Laing et al. | Aug 1999 | A |
5961095 | Schrott | Oct 1999 | A |
5963624 | Pope | Oct 1999 | A |
5966753 | Gauthier et al. | Oct 1999 | A |
5979776 | Williams | Nov 1999 | A |
5983922 | Laing et al. | Nov 1999 | A |
6000170 | Davis | Dec 1999 | A |
6003170 | Humpert et al. | Dec 1999 | A |
6003182 | Song | Dec 1999 | A |
6006784 | Tsutsui et al. | Dec 1999 | A |
6019130 | Rump | Feb 2000 | A |
6026844 | Laing et al. | Feb 2000 | A |
6029094 | Diffut | Feb 2000 | A |
6032616 | Jones | Mar 2000 | A |
6042885 | Woollard et al. | Mar 2000 | A |
6061499 | Hlebovy | May 2000 | A |
6075454 | Yamasaki | Jun 2000 | A |
6085790 | Humpert et al. | Jul 2000 | A |
6093313 | Bovaird et al. | Jul 2000 | A |
6101452 | Krall et al. | Aug 2000 | A |
6132085 | Bergeron | Oct 2000 | A |
6167845 | Decker, Sr. | Jan 2001 | B1 |
6175689 | Blanco, Jr. | Jan 2001 | B1 |
6182683 | Sisk | Feb 2001 | B1 |
6192192 | Illy et al. | Feb 2001 | B1 |
6196065 | Henksmeier et al. | Mar 2001 | B1 |
6202980 | Vincent et al. | Mar 2001 | B1 |
6227235 | Laing et al. | May 2001 | B1 |
6240250 | Blanco, Jr. | May 2001 | B1 |
6250558 | Dogre Cuevas | Jun 2001 | B1 |
6250601 | Kolar et al. | Jun 2001 | B1 |
6273394 | Vincent et al. | Aug 2001 | B1 |
6283139 | Symonds et al. | Sep 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6290139 | Kolze | Sep 2001 | B1 |
6290147 | Bertrand et al. | Sep 2001 | B1 |
6294786 | Marcichow et al. | Sep 2001 | B1 |
6315208 | Doyle | Nov 2001 | B1 |
6317717 | Lindsey et al. | Nov 2001 | B1 |
6321785 | Bergmann | Nov 2001 | B1 |
6337635 | Ericksen et al. | Jan 2002 | B1 |
6340032 | Zosimadis | Jan 2002 | B1 |
6341389 | Philipps-Liebich et al. | Jan 2002 | B2 |
6351603 | Waithe et al. | Feb 2002 | B2 |
6363549 | Humpert et al. | Apr 2002 | B2 |
6370713 | Bosio | Apr 2002 | B2 |
6377009 | Philipp | Apr 2002 | B1 |
6389226 | Neale et al. | May 2002 | B1 |
6438770 | Hed et al. | Aug 2002 | B1 |
6445306 | Trovato et al. | Sep 2002 | B1 |
6446875 | Brooks et al. | Sep 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
RE37888 | Cretu-Petra | Oct 2002 | E |
6457355 | Philipp | Oct 2002 | B1 |
6466036 | Philipp | Oct 2002 | B1 |
6473917 | Mateina | Nov 2002 | B1 |
6474951 | Stephan et al. | Nov 2002 | B2 |
6513787 | Jeromson et al. | Feb 2003 | B1 |
6522078 | Okamoto et al. | Feb 2003 | B1 |
6535200 | Philipp | Mar 2003 | B2 |
6536464 | Lum et al. | Mar 2003 | B1 |
6549816 | Gauthier et al. | Apr 2003 | B2 |
6574426 | Blanco, Jr. | Jun 2003 | B1 |
6588377 | Leary et al. | Jul 2003 | B1 |
6598245 | Nishioka | Jul 2003 | B2 |
6612267 | West | Sep 2003 | B1 |
6619320 | Parsons | Sep 2003 | B2 |
6619567 | Ouyoung | Sep 2003 | B1 |
6622930 | Laing et al. | Sep 2003 | B2 |
6629645 | Mountford et al. | Oct 2003 | B2 |
6639209 | Patterson et al. | Oct 2003 | B1 |
6644333 | Gloodt | Nov 2003 | B2 |
6659048 | DeSantis et al. | Dec 2003 | B1 |
6676024 | McNerney et al. | Jan 2004 | B1 |
6684822 | Lieggi | Feb 2004 | B1 |
6691338 | Zieger | Feb 2004 | B2 |
6705534 | Mueller | Mar 2004 | B1 |
6707030 | Watson | Mar 2004 | B1 |
6734685 | Rudrich | May 2004 | B2 |
6757921 | Esche | Jul 2004 | B2 |
6768103 | Watson | Jul 2004 | B2 |
6770869 | Patterson et al. | Aug 2004 | B2 |
6779552 | Coffman | Aug 2004 | B1 |
6874535 | Parsons et al. | Apr 2005 | B2 |
6877172 | Malek et al. | Apr 2005 | B2 |
6892952 | Chang et al. | May 2005 | B2 |
6895985 | Popper et al. | May 2005 | B2 |
6913203 | DeLangis | Jul 2005 | B2 |
6955333 | Patterson et al. | Oct 2005 | B2 |
6956498 | Gauthier et al. | Oct 2005 | B1 |
6962162 | Acker | Nov 2005 | B2 |
6962168 | McDaniel et al. | Nov 2005 | B2 |
6964404 | Patterson et al. | Nov 2005 | B2 |
6964405 | Marcichow et al. | Nov 2005 | B2 |
6968860 | Haenlein et al. | Nov 2005 | B1 |
6993607 | Philipp | Jan 2006 | B2 |
7025077 | Vogel | Apr 2006 | B2 |
7069941 | Parsons et al. | Jul 2006 | B2 |
7070125 | Williams et al. | Jul 2006 | B2 |
7096517 | Gubeli et al. | Aug 2006 | B2 |
7099649 | Patterson et al. | Aug 2006 | B2 |
D528991 | Katsuyama et al. | Sep 2006 | S |
7150293 | Jonte | Dec 2006 | B2 |
7174577 | Jost et al. | Feb 2007 | B2 |
7232111 | McDaniel et al. | Jun 2007 | B2 |
7295190 | Philipp | Nov 2007 | B2 |
7380731 | Hsu | Jun 2008 | B1 |
7537023 | Marty et al. | May 2009 | B2 |
7537195 | McDaniel et al. | May 2009 | B2 |
7627909 | Esche | Dec 2009 | B2 |
7690395 | Jonte et al. | Apr 2010 | B2 |
7753074 | Rosko et al. | Jul 2010 | B2 |
7766043 | Thomas et al. | Aug 2010 | B2 |
7997301 | Marty et al. | Aug 2011 | B2 |
8028355 | Reeder et al. | Oct 2011 | B2 |
8118240 | Rodenbeck et al. | Feb 2012 | B2 |
8162236 | Rodenbeck et al. | Apr 2012 | B2 |
8365767 | Davidson et al. | Feb 2013 | B2 |
8561626 | Sawaski et al. | Oct 2013 | B2 |
8776817 | Sawaski et al. | Jul 2014 | B2 |
8939429 | Sawaski et al. | Jan 2015 | B2 |
8944105 | Rodenbeck et al. | Feb 2015 | B2 |
20010022352 | Rudrich | Sep 2001 | A1 |
20020007510 | Mann | Jan 2002 | A1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020113134 | Laing et al. | Aug 2002 | A1 |
20020117122 | Lindner | Aug 2002 | A1 |
20020148040 | Mateina | Oct 2002 | A1 |
20020179723 | Wack et al. | Dec 2002 | A1 |
20030080194 | O'Hara et al. | May 2003 | A1 |
20030088338 | Phillips et al. | May 2003 | A1 |
20030089399 | Acker | May 2003 | A1 |
20030125842 | Chang et al. | Jul 2003 | A1 |
20030126993 | Lassota et al. | Jul 2003 | A1 |
20030185548 | Novotny et al. | Oct 2003 | A1 |
20030213062 | Honda et al. | Nov 2003 | A1 |
20040011399 | Segien, Jr. | Jan 2004 | A1 |
20040041033 | Kemp | Mar 2004 | A1 |
20040041034 | Kemp | Mar 2004 | A1 |
20040061685 | Ostergard et al. | Apr 2004 | A1 |
20040135010 | Malek et al. | Jul 2004 | A1 |
20040149643 | Vandenbelt et al. | Aug 2004 | A1 |
20040155116 | Wack et al. | Aug 2004 | A1 |
20040206405 | Smith et al. | Oct 2004 | A1 |
20040212599 | Cok et al. | Oct 2004 | A1 |
20040262552 | Lowe | Dec 2004 | A1 |
20050001046 | Laing | Jan 2005 | A1 |
20050006402 | Acker | Jan 2005 | A1 |
20050022871 | Acker | Feb 2005 | A1 |
20050086958 | Walsh | Apr 2005 | A1 |
20050117912 | Patterson et al. | Jun 2005 | A1 |
20050121529 | DeLangis | Jun 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050127313 | Watson | Jun 2005 | A1 |
20050133100 | Bolderheij et al. | Jun 2005 | A1 |
20050150552 | Forshey | Jul 2005 | A1 |
20050150556 | Jonte | Jul 2005 | A1 |
20050151101 | McDaniel et al. | Jul 2005 | A1 |
20050194399 | Proctor | Sep 2005 | A1 |
20050199843 | Jost et al. | Sep 2005 | A1 |
20050273218 | Breed et al. | Dec 2005 | A1 |
20060066991 | Hirano et al. | Mar 2006 | A1 |
20060101575 | Louis | May 2006 | A1 |
20060130907 | Marty et al. | Jun 2006 | A1 |
20060130908 | Marty et al. | Jun 2006 | A1 |
20060138246 | Stowe et al. | Jun 2006 | A1 |
20060153165 | Beachy | Jul 2006 | A1 |
20060186215 | Logan | Aug 2006 | A1 |
20060200903 | Rodenbeck et al. | Sep 2006 | A1 |
20060201558 | Marty et al. | Sep 2006 | A1 |
20060202142 | Marty et al. | Sep 2006 | A1 |
20060212016 | Lavon et al. | Sep 2006 | A1 |
20060231638 | Belz et al. | Oct 2006 | A1 |
20060231788 | Cheng | Oct 2006 | A1 |
20060238428 | Schmitt et al. | Oct 2006 | A1 |
20060238513 | Philipp | Oct 2006 | A1 |
20060283511 | Nelson | Dec 2006 | A1 |
20070001018 | Schmitt et al. | Jan 2007 | A1 |
20070057215 | Parsons et al. | Mar 2007 | A1 |
20070069168 | Jonte | Mar 2007 | A1 |
20070157978 | Jonte et al. | Jul 2007 | A1 |
20070235672 | McDaniel et al. | Oct 2007 | A1 |
20070246267 | Koottungal | Oct 2007 | A1 |
20070246550 | Rodenbeck et al. | Oct 2007 | A1 |
20070246564 | Rodenbeck et al. | Oct 2007 | A1 |
20080099045 | Glenn et al. | May 2008 | A1 |
20080111090 | Schmitt | May 2008 | A1 |
20080178950 | Marty et al. | Jul 2008 | A1 |
20080178957 | Thomas et al. | Jul 2008 | A1 |
20080189850 | Seggio et al. | Aug 2008 | A1 |
20080203195 | Schmitt | Aug 2008 | A1 |
20080271238 | Reeder et al. | Nov 2008 | A1 |
20090039176 | Davidson et al. | Feb 2009 | A1 |
20100012194 | Jonte et al. | Jan 2010 | A1 |
20100044604 | Burke et al. | Feb 2010 | A1 |
20100096017 | Jonte et al. | Apr 2010 | A1 |
20100108165 | Rodenbeck et al. | May 2010 | A1 |
20100170570 | Rodenbeck et al. | Jul 2010 | A1 |
20100294641 | Kunkel | Nov 2010 | A1 |
20110016625 | Marty et al. | Jan 2011 | A1 |
20110088784 | Meehan et al. | Apr 2011 | A1 |
20110253220 | Sawaski et al. | Oct 2011 | A1 |
20110284111 | Marty et al. | Nov 2011 | A1 |
20120145249 | Rodenbeck et al. | Jun 2012 | A1 |
20120160349 | Jonte et al. | Jun 2012 | A1 |
20130146160 | Davidson et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2492226 | Jul 2005 | CA |
101563561 | Oct 2009 | CN |
3339849 | May 1985 | DE |
4401637 | May 1998 | DE |
19815324 | Nov 2000 | DE |
0961067 | Dec 1999 | EP |
63111383 | May 1988 | JP |
2000-073426 | Mar 2000 | JP |
2003-20703 | Jan 2003 | JP |
2003-105817 | Apr 2003 | JP |
2003-293411 | Oct 2003 | JP |
2004-092023 | Mar 2004 | JP |
2005-146551 | Jun 2005 | JP |
2007270538 | Oct 2007 | JP |
10-1997-0700266 | Jan 1997 | KR |
10-2003-0008144 | Jan 2003 | KR |
10-2003-0077823 | Oct 2003 | KR |
200382786 | Apr 2005 | KR |
WO 9117377 | Nov 1991 | WO |
WO 0120204 | Mar 2001 | WO |
WO 2004094990 | Nov 2004 | WO |
WO 2005057086 | Jun 2005 | WO |
WO 2006098795 | Sep 2006 | WO |
2006136256 | Dec 2006 | WO |
WO 2007059051 | May 2007 | WO |
WO 2007082301 | Jul 2007 | WO |
WO 2007124311 | Nov 2007 | WO |
WO 2007124438 | Nov 2007 | WO |
WO 2008118402 | Jun 2008 | WO |
WO 2008088534 | Jul 2008 | WO |
WO 2008094246 | Aug 2008 | WO |
WO 2008094247 | Aug 2008 | WO |
WO 2008094651 | Aug 2008 | WO |
WO 2009075858 | Jun 2009 | WO |
WO 2011133665 | Oct 2011 | WO |
Entry |
---|
KWC AG, Kitchen Faucet 802285 Installation and Service Instructions, dated Jul. 2005, 8 pgs. |
TOTO® Products, “Self-Generating EcoPower System Sensor Faucet, Standard Spout,” Specification Sheet, Nov. 2002, 2 pgs. |
ZURN® Plumbing Products Group, “AquaSense® Z6903 Series”, Installation, Operation, Maintenance and Parts Manual, Aug. 2001, 5 pgs. |
ZURN® Plumbing Products Group, “AquaSense® Sensor Faucet,” Jun. 9, 2004, 2 pgs. |
SLOAN® Optima® i.q. Electronic Hand Washing Faucet, Apr. 2004, 2 pgs. |
Symmons®, “Ultra-Sense® Battery-Powered, Sensor-Operated Lavatory Faucet S-6080 Series,” Oct. 2002, 4 pgs. |
Symmons® Commercial Faucets: Reliability With a Sense of Style, 1 pg. |
Symmons®, “Ultra-Sense® Sensor Faucets with Position-Sensitive Detection,” Aug. 2004, 4 pgs. |
Technical Concepts International, Inc., Capri AutoFaucet® with Surround Sensor™ Technology, 500556, 500576, 500577, (undated), 1 pg. |
Technical Concepts, AutoFaucet® with “Surround Sensor” Technology, Oct. 2005, 4 pgs. |
Camacho et al., Freescale Semiconductor, “Touch Pad System Using MC34940/MC33794 E-Field Sensors,” Feb. 2006, 52 pgs. |
Philipp, “Tough Touch Screen,” applicanceDESIGN, Feb. 2006, pp. 14-17. |
Quantum Research Group, “E401 User Manual,” at least as early as Oct. 22, 2007, 15 pgs. |
Quantum Research Group, “Gorenje Puts QSlideTM Technology into Next-Generation Kitchen Hob,” Feb. 8, 2006, http://www.qprox.com/news/gorenje.php, 3 pgs. |
Quantum Research Group, “Qprox™ Capacitive Touch Applications,” at least as early as Oct. 22, 2007, http://www.qprox.com/background/applications.php, 8 pgs. |
Quantum Research Group, “QT401 QSlide™ Touch Slider IC,” 2004, 16 pgs. |
Quantum Research Group, “QT411-ISSG QSlide™ Touch Slider IC,” 2004-2005, 12 pgs. |
Sequine et al., Cypress Perform, “Application Note AN2292, Layout Guidelines for PSoC™ CapSense™” Oct. 31, 2005, 15 pgs. |
Sequine et al., Cypress Perform, “Application Notes AN2233a, Capacitive Switch Scan” Apr. 14, 2005, 6 pgs. |
Symmons, Ultra-Sense, Battery-Powered Faucets with PSD and Ultra-Sense AC Powered Faucets, © 1999-2004, 2 pgs. |
Various Products (available at least before Apr. 20, 2006), 5 pgs. |
Symmons®, “Ultra-Sense® Sensor Faucets with Position-Sensitive Detection,” © 2001-2002, 2 pgs. |
Hego WaterDesign, “Touch Faucets—Amazing Futuristic Faucet Designs”, Oct. 6, 2009, 3 pgs. |
Dave Van Ess, Capacitive Sensing Builds a Better Water-Cooler Control, Cypress Semiconductor Corp., Nov. 2007. |
Aviation Faucet System, Product Brochure, Franke Aquarotter GmbH, downloaded Oct. 1, 2012. |
Springking Industry Col, Limited, Touch Sensor Faucet, Product Specification, copyright 2010 downloaded Oct. 1, 2012. |
PCT International Search Report and Written Opinion, International Application No. PCT/US2013/037384, dated Jul. 25, 2013, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20130276911 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61636373 | Apr 2012 | US |