The disclosed invention relates to a tool for removing and inserting a plumbing fixture seal. In particular, the present invention relates to a simple device for replacing a worn seal or spring in a faucet.
Modern plumbing fixtures include a seal structure which controls the flow of fluid and, when functioning properly, prevents flow completely in the off position. If the seal structure fails, the fixture will leak and replacement of the seal is necessary.
The seal structure generally consists of a small, cylindrical, open-ended rubber seal and a small spring. The rubber seal may crack or break or the springs may lose their memory and fail to perform as intended, causing the faucet to leak. Replacement of this seal normally resolves the leak but is difficult because of the small size of the seal structure and the small area in which the structure is located. Normally, both the seal and the spring are replaced simultaneously.
Previous methods for replacing the seal structure involve the use of tools not designed for this situation. The use of screwdrivers and other long tools is common in the industry since the location of the worn seal structure is not easily accessible. Additionally, this repair does not lend itself to completion by hand since there is not sufficient room in most faucets for an adult's fingers.
More complex tools, such as the device disclosed by U.S. Pat. No. 5,299,347 ('347), provide for the retraction of an inner member into an outer housing to disengage a seal and spring frictionally connected to the tapered tip of the inner member. This design is complicated and difficult to use.
Accordingly, it is an object of the present invention to provide a tool for removing and installing a seal structure in a plumbing fixture.
It is another object of the present invention to provide a tool which is convenient and easy to use.
It is yet a further object of the present invention to provide a tool which has a simple design which is reusable.
Finally, it is an object of the present invention to accomplish the foregoing objectives in a simple and cost effective manner.
A faucet and spring tool utilized to remove and replace the seal and spring from a faucet valve assembly. The device consists of a cylindrical, hollow external housing having upper and lower ends and a cylindrical guide having upper and lower ends and designed to be removably disposed within the external housing such that the lower end of the guide does not extend beyond the lower end of the external housing in a resting position. A cap is removably attachable to the upper end of the cylindrical guide such that the cap extends beyond the upper end of the external housing in a resting position. A compression spring having upper and lower ends is disposed within the upper end of the external housing such that depression of the cap causes compression of the spring which further causes the lower end of the cylindrical guide to extend beyond the lower end of the external housing. The lower end of the compression spring is held in place by an area of reduced internal diameter in the external housing. The cylindrical guide includes a lip which interacts with an area of reduced internal diameter in the external housing to prevent the cylindrical guide from sliding past a predetermined location. The cap is either pressure fit to or threaded onto the upper end of the cylindrical guide. The external housing includes stationary grip handles which are preferably formed integrally with the external housing and which preferably are curved to accept a user's fingers. The external housing, the cap and the cylindrical guide are preferably formed from a water resistant or waterproof material, such as a plastic, composite or a thermoplastic.
The spring 20 and seal 22, shown in
A standard faucet valve assembly has a valve body with a main bore and a counterbore inlet passageway leading from a supply of water. The counterbore holds a tubular seal (seal 22 and spring 20) element in the inlet passageway of the valve body. The present invention enables the user to remove both the worn seal 22 and spring 20 together and replace a new seal 22 and spring 20 together. The spring 20 generally used in the industry is a frustoconical configuration with a smaller upper end, which engages the seal 22 and urges it against the valving member. The larger diameter of the conical spring 20 engages an annular shoulder of the counterbore. The seal 22 generally consists of a rubber or rubber-like composition with a through bore diameter that is comparable in size to the small end of the conical spring 20.
The grip handles 24 are an integral part of the external housing 26 of the device. The housing 26 is cylindrical and hollow with varying internal diameters. The upper portion of the housing 26 is designed to accept a spring 28 through an opening in the top of the housing 26 and maintain the spring 28 in the upper portion of the housing 26 due to a smaller internal diameter, as discussed below and shown in more detail in FIG. 9.
The device further consists of a central cylindrical guide 30. This guide 30 is placed inside the external housing 26 and is designed to slide within the external housing 26 as needed. The external housing 26 includes varying internal diameters which work in conjunction with varying external diameters on the guide 30 to control movement of the guide within the external housing 26. The lower end of the guide 30 is preferably tapered to facilitate removal and replacement of the spring 20 and seal 22 in a fixture. The upper end of the guide 30 is designed to accept a cap 32. The cap 32 includes a central indentation in the lower surface. In the preferred embodiment shown in
The device is assembled as follows. The upper end of guide 30 is placed within the lower end of external housing 26 and slid into the housing 26 until the upper end of the guide 30 extends from the upper end of the external housing 26. At this point, the lower end of the guide will not extend from the lower end of the external housing 26 although, preferably, the ends are flush. The spring 28 is placed in the upper end of the external housing 26, surrounding the guide 30. The cap 32 is then attached to the upper end of the guide 30 through a pressure fit, threading or other means as desired. Following assembly, the device is as shown in
The lower end of the external housing 26 also includes portions of differing internal diameters. The internal diameter 38 of the bottom end of the external housing 26 accepts the guide 30. Above the bottom end of the external housing 26 is a portion with a reduced internal diameter 40. This reduced internal diameter 40 interacts with a lip 42, 42a (shown in
The cap, housing 26 and guide 30 are made from durable material which is preferably water resistant and, even more preferably, waterproof, such as plastics or composites. One material used to manufacture the tool is called Acetal, which is an engineering thermoplastic. The material offers a high modulus of elasticity, high strength, and dimensional stability. It has excellent resistance to moisture and is ideal for close tolerance parts (easily machined). Moreover, injection molded materials are particularly preferred in the production of the invention. The spring 28 is a compression spring preferably having a strength of approximately 10.25 lbs.
As shown in
In use, the device is held in one hand during the removal or insertion of the spring 20 and seal 22. The cap 32 is pressed, causing the spring 28 to compress against surface 36 and forcing the guide 30 to extend from the housing 26. In this position, the guide 30 is forced into the center of the worn spring 20 and seal 22. When the device is removed, with the cap 32 still depressed, the worn spring 20 and seal 22 are held on the guide 30 by a friction fit. Once the device is completely removed, the cap 32 can be released, allowing the guide 30 to slide back into the housing 26 while the spring 20 and seal 22 fall off the guide 30.
To install a new spring 20 and seal 22, the cap 32 is depressed to extend the guide 30 from the external housing 26. In this position, the new spring 20 and seal 22 are placed on the guide 30. With the cap 32 still depressed, the spring 20 and seal 22 are placed in the faucet. Once the spring 20 and seal 22 are properly seated, the cap 32 is released thus removing the guide 30 from the spring 20 and seal 22 and leaving them in the proper location. The guide 30 preferably has a tapered end to allow the rubber seal 22 to further up the guide 30 and maintain position while the spring 20 is held on by the diameter at a lower position along the tapered end of the guide 30 with no interference with the rubber seal 22. Both the spring 20 and seal 22 are held into place by separate planes that allow for both to be removed and replaced within the same motion.
In one embodiment of the invention, the external housing 26 performs two functions: (A) the holding action that is required to use the device, and (B) the push and release action to retrieve the old seal 22 and spring 20 and replace with the new seal 22 and spring 20. The push and release action consists of a compression spring 28, cap 32, guide 30 and external housing 26. Guide 30 and cap 32,
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
The present application claims priority from U.S. Provisional Application Ser. No. 60/395,489, filed Jul. 12, 2002.
Number | Name | Date | Kind |
---|---|---|---|
1518222 | Sather | Dec 1924 | A |
5097580 | Story | Mar 1992 | A |
5299347 | Decker | Apr 1994 | A |
6012209 | Whetstone | Jan 2000 | A |
6574843 | Meadows | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040020022 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
60395489 | Jul 2002 | US |