Not applicable.
Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to a component of drinking water equipment, and more particularly to the innovative structure type of a faucet that can be equipped with an air gap device.
Reverse osmosis water treatment equipment will produce wastewater in the course of water treatment. The wastewater is discharged through the drain line. An air gap device is arranged in the upstream water pipe of wastewater drain line, so as to prevent the wastewater from entering water system through the drain line due to siphonage.
U.S. Pat. No. 7,011,106B2 and U.S. Pat. No. 7,357,147B2 patent documents disclose a faucet with an air gap device, including a main body, a valve and an air gap device, wherein the main body defines an inlet and an outlet, a valve chamber is located between the inlet and the outlet, an air gap chamber forms an opening at the first end of the main body, wherein a vent enters the air gap chamber through the wall of the main body. The valve is located in the valve chamber for controlling the liquid to flow from the inlet to the outlet. The air gap device comprises a holder and an air gap structure, the holder and the air gap structure are located in the air gap chamber.
The vent penetrates the wall on one side of the main body. Before the air gap chamber is equipped with the air gap device, a movable cover is installed on the main body to block the vent, no matter whether the main body is provided with the cover, the vent or the cover destroys the appearance integrity of the faucet.
The main purpose of the present invention is to provide a faucet that can be equipped with an air gap device.
Based on the aforementioned purpose, the faucet that can be equipped with an air gap device of the present invention which comprises a base, a chamber is formed inside the base, and an air gap device is disposed in the chamber, the chamber extends to the bottom of the base.
A main body is disposed on the top edge of the base, and a valve chamber, a first channel and a second channel are formed inside the main body. The first channel communicates with the valve chamber and the chamber, the second channel communicates with the valve chamber and the outside of the main body, so that an inlet pipe communicates with the first channel. An outlet pipe communicates with the second channel, and the water enters the valve chamber through the inlet pipe and flows out through the outlet pipe.
A control valve is disposed in the valve chamber, so as to control the water to flow from the first channel to the second channel.
A support block is located between the base and the main body, so that a gap is formed between the base and the main body. The gap communicates with the chamber through at least one connecting passage, and the gap communicates with the space outside the faucet, so that the air enters or leaves the chamber through the gap.
The main effect and advantages of the present invention are that the gap is formed between the base and the main body, the air can enter or leave the chamber through the gap, the overall appearance of the faucet is free of visually attractive vents, and the integrity of the appearance can be maintained.
As shown in
The support blocks 71 are located between the base 10 and the main body 20, so that the base 10 and the main body 20 are vertically separated, and a gap 73 is formed between the base 10 and the main body 20. The gap 73 communicates with the space outside the faucet 01. Furthermore, the support blocks 71 are arranged on the top of the base 10, and several connecting passages 72 are formed between the support blocks 71, respectively. The connecting passages 72 communicate with the chamber 11 and the gap 73, respectively. A first surface 24 is formed at the bottom of the main body 20. A slot 25 is formed in the main body 20. The slot 25 extends upwards from the first surface 24 into the main body 20, and the slot 25 communicates with the chamber 11. An abutting surface 26 is formed at one end of the slot 25 far from the first surface 24 of the main body 20. The support blocks 71 enter the slot 25 respectively and prop the abutting surface 26, so that the support blocks 71 support the main body 20. A side slot wall 27 is formed around the slot 25 of the main body 20. The support blocks 71 are laterally opposite to the side slot wall 27 respectively.
The distance in height between the bottom and top of the support block 71 is defined as the first height H1. The distance in height between the first surface 24 and the abutting surface 26 is defined as the second height H2. The first height H1 is larger than the second height H2, so that the gap 73 is formed between the first surface 24 and the top end of the base 10. The gap 73 communicates with the chamber 11 through the connecting passage 72, so that the air enters or leaves the chamber 11 through the connecting passage 72 and the gap 73. The preferred difference between the first height H1 and the second height H2 is 0.05 mm-2 mm. The difference between the first height H1 and the second height H2 can be changed as required. In this case, the difference between the first height H1 and the second height H2 is 0.2 mm.
As shown in
As shown in
The support blocks 71 are annularly arranged on the base 10. The connecting passages 72 are formed between adjacent support blocks 71 respectively. The abutting surface 26 and the side slot wall 27 coordinate with each other to form a ring, fitting the annularly arranged support blocks 71, the gap 73 is annular. Therefore, the gap 73 is annular, in terms of Embodiment 1, the gap 73 exactly forms a visual effect of annular abutting boundary between the base 10 and the main body 20.
The top end of the base 10 has an annular second surface 12, the second surface 12 abuts on the bottom of the support block 71 and the lateral surface 13 of the base 10, the second surface 12 is opposite to the first surface 24, the gap 73 is formed between the first surface 24 and the second surface 12.
As shown in
As shown in
Several distances can be formed in radial direction of the main body 20 between the support block 71 and the side slot wall 27. When the main body 20 is disposed on the base 10, the elastic ring unit 74 forms adjacency relations of the support block 71, the ring unit 74 and the side slot wall 27, the lateral positioning reliability of the main body 20 on the base 10 can be enhanced, and the steadiness of the main body 20 on the base 10 can be enhanced by the elasticity of the ring unit 74. On the other hand, the requirement for the relatively fitted dimensional tolerance in side direction of the support block 71 and the slot 25 can be lowered, favorable for lowering the requirement for the accuracy of the support block 71 and the slot 25, so that the difficulty level of molding of the support block 71 and the slot 25 is reduced.
Furthermore, an embedding groove 75 is made in the side of the support blocks 71 facing the side slot wall 27 respectively, the ring unit 74 is embedded in the embedding groove 75, so as to position the ring unit 74.
The quantity and specific shape of the support blocks 71 can be changed as required, so as to form the Embodiment 4 shown in
As shown in
Several air passages 76 are formed on the side of the support block 71 facing the side slot wall 27. Both ends of the air passages 76 extend to the top edge and bottom edge of the support block 71 respectively, and the air passages 76 communicate with the connecting passages 72 and the gap 73 respectively.
As shown in
As shown in
The difference between the third height H3 and the fourth height H4 is 0.05 mm-2 mm, in this case, the difference between the third height H3 and the fourth height H4 is 0.2 mm.
The Embodiment 6 can be changed to another form where the main body 20 is provided with a support block 71, and the support block 71 is annular, and the connecting passage (not shown in the figure) and air passage (not shown in the figure) are formed fitting the annular support block 71. The aforementioned annular support block 71, the connecting passage and the air passage are based on the application of the support block 71, the connecting passage 72 and the air passage 76 disclosed in Embodiment 5, but this kind of application can easily occur to the persons of related domains based on Embodiment 5 and Embodiment 6.