The present application relates generally to the field of faucets for dispensing water. More specifically, this application relates to faucets having control arms interconnecting movable sprayheads to bases of the spout.
At least one embodiment of the present application relates to a faucet that includes a base, a sprayhead, a flexible hose, and a control arm. The base is mountable to a mounting surface. The sprayhead is movable relative to the base and is configured to emit water in at least one spray pattern. The flexible hose is separate from and outside of the control arm, and the flexible hose connects the sprayhead and the base. The control arm includes a first end and a second end, wherein the first end is pivotally connected to the base to allow rotation of the control arm relative to the base, and wherein the second end is detachably coupled to the sprayhead such that in a docked position, movement of the control arm moves the sprayhead relative to the base, and such that in a detached position, the sprayhead is movable relative to the base and the control arm.
One of the second end of the control arm and the sprayhead may include a magnet that applies a magnetic force to attract the other of the second end and the sprayhead to couple the second end and the sprayhead together in the docked position.
One of the second end of the control arm and the sprayhead may include a ball and the other of the second end and the sprayhead may include a socket, wherein the socket receives the ball in the docked position to detachably couple the sprayhead and the control arm together. For example, the second end of the control arm may include the socket, the sprayhead may include the ball, one of the ball and the socket may include the magnet and the other of the ball and the socket may include a ferromagnetic material. For example, the second end of the control arm may include the ball and the sprayhead may include the socket.
The faucet may include a collar. The collar may be disposed on an end of the base, such as an end that is opposite a mounting end of the base. The collar may be rotatable relative to the base about a longitudinal axis of the base. A first end of the control arm may be coupled to the collar. For example, the first end of the control arm may be pivotally coupled to the base through the collar such that the control arm rotates relative to the collar and the base about a pivot axis that is transverse to the longitudinal axis.
The faucet may include a retainer that is configured to maintain a position (e.g., a rotational position) of the control arm relative to the base, such as following movement (e.g., rotation) of the control arm relative to the base. By way of non-limiting example, the retainer may include at least one of a spring, a detent, or a ratchet. For example, the retainer may include a bushing assembly and a tension member. The bushing assembly may be configured to rotatably connect the control arm to the collar. The bushing assembly may include a shaft having an inner shoulder and an outer shoulder, where the inner shoulder is coupled to the collar through an aperture thereof, and the outer shoulder is coupled to the control arm through an aperture thereof. The tension member may be disposed at least in part within the control arm. The tension member may include a first end and a second end, where the first end is coupled to the control arm, and the second end is coupled to the shaft such that the tension member can rotate freely relative to the shaft during rotation of the control arm relative to the collar.
The control arm may be configured to include a first arm portion, which has the first end of the control arm, and a second arm portion, which has the second end of the control arm. The first and second arm portions may be telescopically adjustable relative to one another. For example, at least one of the first and second arm portions may include a hollow section such that the other of the first and second arm portions slides within the hollow section during telescopic adjustment.
At least one embodiment of the present application relates to a faucet that includes a base, a sprayhead, a flexible hose, and a control arm. The base may be configured to mount to a mounting surface. The sprayhead is movable relative to the base and is configured to emit water in at least one spray pattern. The flexible hose is separate from and outside of the control arm, and the flexible hose connects the sprayhead and the base. The control arm includes a first arm and a second arm. The first arm has a first end that is pivotally connected to the base to allow rotation of the first arm relative to the base. The second arm has a first end coupled to the sprayhead, and a second end of the first arm and a second end of the second arm are telescopically connected together to adjust a length of the control arm.
The first end of the second arm may be coupled to the sprayhead through a ball joint. The ball joint may include a ball and a socket, such as where the second arm includes one of the ball and the socket, and the sprayhead includes the other of the ball and the socket. For example, the sprayhead may include an outer housing and a socket, and the socket may include a hollow cylindrical projection extending from a side of the outer housing, where the projection receives the ball of the first end of the second arm.
The faucet may include a collar disposed on an end of the base that is opposite a mounting end of the base. The collar may be rotatable relative to the base about a longitudinal axis. The first end of the first arm may be pivotally connected to the base through the collar such that the first arm is rotatable relative to the collar about a pivot axis that is transverse to the longitudinal axis.
The first end of the second arm may be configured to detachably couple to the sprayhead through a magnet and a ferromagnet, such that in a docked position, movement of the second arm moves the sprayhead relative to the base, and such that in a detached position, the sprayhead is movable relative to the base and the control arm.
At least one embodiment of the present application relates a faucet that includes a base, a collar, a sprayhead, a control arm, and a flexible hose. The base is configured to mount to a mounting surface. The collar is rotatably coupled to the base such that the collar is rotatable about a rotational axis relative to the base. The sprayhead is movable relative to the base and the collar, where the sprayhead is configured to emit water in at least one spray pattern. The control arm is coupled to the collar through a first spheroidal joint to allow free rotation of the control arm relative to the collar, and the control arm is coupled to the sprayhead through a second spheroidal joint to allow free rotation of the sprayhead relative to the control arm. The flexible hose connects an inlet of the sprayhead and an outlet of the collar. The flexible hose is also separate from and outside of the control arm.
Each of the first and second spheroidal joints may, for example, include a ball and a socket. The control arm may include the ball of the first spheroidal joint that is coupled to one end of the control arm and may also include the ball of the second spheroidal joint that is coupled to an opposite end of the control arm. The collar may include an outer wall and the socket of the first spheroidal joint, which includes a first hollow cylindrical projection extending from the outer wall. The sprayhead may include an outer housing and the socket of the second spheroidal joint, which includes a second hollow cylindrical projection extending from the outer housing.
The control arm may include a first arm and a second arm. The first arm may include a first end that is coupled to the first spheroidal joint; and the second arm may include a first end that is coupled to the second spheroidal joint. A second end of the first arm and a second end of the second arm may be telescopically connected together to adjust a length of the control arm. One of the first and second arms may include a bore that receives at least a portion of the other of the first and second arms in a shortened position.
Referring generally to the Figures, disclosed herein are various embodiments of faucets that include control arms that provide for added control over movement of a sprayhead relative to a base of the spout. The control arms are configured to interconnect (e.g., detachably, fixedly, etc.) movable sprayheads to the bases to support forces/loads from the sprayheads while providing an increased range of coverage of the sprayhead. The control arms may be adjustable (e.g., telescopically) or may have a fixed length. The control arms may be configured to swing, to pivot, or to provide other movements. The control arms may include joints (e.g., ball joints) to provide additional movement and control.
The base 102 is configured to be fixedly mounted (e.g., secured, attached, etc.) to a mounting surface, such as a sink, countertop or other suitable surface. The base 102 is hollow such that other elements of the faucet 101 can be routed or housed within the base 102. For example, the base 102 may house a valve, one or more water delivery lines (e.g., conduits, etc.) for carrying water, or other elements of the faucet.
The faucet 101 includes a valve for controlling flow of water therethrough. For example, the faucet 101 may include a mixing valve that controls a flow of hot water, cold water, or a mixture of hot and cold waters through the base 102 and the hose 104 to the sprayhead 103. According to another example, the valve may control the flow of water from a single source through the faucet 101. Any type of valve may be employed with the faucets of this application. The valve may be located anywhere in the faucet 101 (e.g., within the base 102) or external to the faucet 101 (e.g., below the base 102) and fluidly connected thereto.
The faucet 101 may include a handle for controlling operation of a valve. As shown in
The sprayhead 103 is configured to be moveable relative to the base 102 of the faucet and to emit water in one or more spray patterns. The sprayhead 103 can be configured according to any suitable configuration. By way of non-limiting examples, the sprayhead 103 can be configured similar to (e.g., having the same or similar structure and configuration, except where noted otherwise) the sprayheads disclosed in U.S. patent application Ser. No. 14/547,913 (filed on Nov. 19, 2014); U.S. patent application Ser. No. 14/207,244 (filed on Mar. 12, 2014); and/or U.S. patent application Ser. No. 13/359,089 (filed on Jan. 26, 2012), which are incorporated by reference herein in their entireties. It is noted that other sprayheads can be employed with the faucets of this application and the sprayheads disclosed in the above identified applications are intended as examples.
As shown in
The flexible hose 104 is configured to physically and fluidly connect the base 102 and the sprayhead 103. The hose 104 is flexible to allow the sprayhead 103 to be moved (e.g., articulated, etc.) relative to the fixed base 102, such as to redirect the spray from the sprayhead 103. According to one non-limiting example, the hose 104 includes a sheathing surrounding a fluid conduit. The fluid conduit is configured to allow fluid (e.g., water) to flow therethrough, such as to fluidly connect the base 102 and the sprayhead 103. The sheathing is configured to protect the fluid conduit to prevent or reduce the likelihood of damage to the conduit. The sheathing includes a first material (e.g., silicone), which according to one example is overmolded onto the fluid conduit, which includes a second material (e.g., polymer) that is pliable. According to one example, the hose is pliable enough to support its own weight, without causing the sprayhead 103 to move when repositioned.
The hose 104 includes a first end 141 and a second end 142. As shown in
The control arm 105 is configured to support the sprayhead 103 by transferring loads back to base 102 while allowing for movement of the sprayhead 103 relative to the base 102. As shown in
The first end 151 of the arm 150 is pivotally connected to a collar 107 (see
The collar 107 may be fixed relative to the base 102. For example, the collar 107 may be integrally formed with the base 102. As shown in
The second end 152 of the control arm 105 is configured to be coupled to the sprayhead 103 to support loads therefrom. As shown, the second end 152 is configured to detachably couple to the sprayhead 103 to support the sprayhead 103 when docked together and to further allow the sprayhead 103 to be moved independently of the control arm 150 when the sprayhead 103 is detached from the second end 152. This arrangement provides additional utility, such as allowing a greater reach by the sprayhead 103. By way of example,
The faucet 101 may include a docking feature to allow the sprayhead 103 to be docked to and detached from the arm 150. According to one exemplary embodiment, the docking feature includes a ball and a socket that detachably receives the ball. As shown in
The docking feature may be magnetized (e.g., employ a magnet) to apply a force (e.g., magnetic force) to retain the ball and socket when coupled together. For example, one of the ball and the socket may include a magnet or be magnetic and the other of the ball and the socket may include a ferromagnetic portion or be ferromagnetic, such that a magnetic force attracts the ball and socket to one another. The magnetic force can be tailored to the application, such as, for example, the magnetic force can be stronger for faucets having relatively higher weight sprayheads and/or hoses, whereas the magnetic force can be weaker for faucets having relatively lower weight sprayheads and/or hoses. The detachable docking feature (e.g., utilizing a magnetic socket and ball) advantageously allows for a user to move (e.g., rotate) the sprayhead independently from the arm.
The arm (e.g., the arm 150) having a joint may be configured to stay in place when moved to a new position, such as by overcoming the weight of the sprayhead and the hose. A feature, such as a detent, as spring, or other suitable element, may be employed to bring and/or retain the arm in a “home” position (e.g., level with horizontal), while allowing the arm to be raised and lowered when only a moderate force is applied to the arm. Thus, the joint may be configured to resist moving when set in a position, rather than springing back to a set position (e.g., the “home” position, the previous position, etc.).
According to other examples, the control arms of the faucets may have other configurations. By way of example, the control arms may be configured as pivoting control arms that are fixedly connected to the sprayheads, as pivoting arms that are extendible, as double jointed arms, as swing style arms, or as other suitable arms.
The control arm 205 includes a plurality of arms that are moveable relative to one another to allow for the length of the control arm 205 to be increased (e.g., in an extended position) or decreased (e.g., in a retracted position). As shown best in
The first arm 251 of the control arm 205 has a first end 251a that is pivotally coupled to the collar 207 (to allow the control arm 205 to be rotated in a plane of rotation that is substantially orthogonal to the plane of rotation of the collar 207) and a second end 251b that is telescopically connected to the second arm 252. For example, a first end of the control arm 205 (e.g., a first end of the first arm 251) may be pivotally coupled to the base 202 through the collar 207, such that the control arm 205 rotates relative to the collar 207 and the base 202 about a pivot axis 221 that is transverse (e.g., orthogonal) to a longitudinal axis 220. As shown, the first arm 251 is a hollow member such that the second arm 252 (or at least a portion thereof) can be moved into and out of a bore in the first arm 251 to provide the telescoping movement. Alternatively, the second arm 252 may be configured having a bore that receives at least a portion of the first arm 251 to provide the telescoping movement.
The second arm 252 of the control arm 205 has a first end 252a coupled to the sprayhead 203 and a second end 252b that is telescopically connected to the first arm 251. As shown, the first end of the second arm 252 is coupled to the sprayhead 203 with a spheroidal joint, such as a ball joint 255 that includes a ball and a socket. As shown best in
As shown, the first and second arms 251,252 can be telescopically adjusted to shorten or lengthen the distance between the first end 252a of the second arm 252 and the first end 251a of the first arm 251, which in turn increases or decreases the distance between the sprayhead 203 and the base 202. The force necessary to adjust the first and second arms 251, 252 telescopically can be tailored to specific applications.
The control arm 305 includes two or more arms that are moveable relative to one another to allow for the length of the control arm 305 to be increased or decreased by extending or retracting the arms. As shown best in
The first arm 351 of the control arm 305 has a first end that is coupled to the collar 307 with a first ball joint 355 (e.g., primary ball joint) to allow the control arm 305 to be rotated relative to the collar 307. The ball joint 355 includes a ball and a socket, with one of the ball and the socket being coupled to the first end of the first arm 351 and the other of the ball and the socket being coupled to the collar 307. The ball and socket of the first ball joint 355 may be permanently coupled together or may be separable, such as by using a magnetized ball joint.
The first arm 351 also includes a second end that is telescopically connected to the second arm 352. As shown, the first arm 351 is a hollow member such that the second arm 352 (or at least a portion thereof) can be inserted into and withdrawn from a bore in the first arm 251 to provide the telescoping movement. Alternatively, the second arm 352 may be configured having a bore that receives at least a portion of the first arm 351 to provide the telescoping movement.
The second arm 352 of the control arm 305 has a first end coupled to the sprayhead 303 and a second end that is telescopically connected to the first arm 351. As shown, the first end of the second arm 352 is coupled to the sprayhead 303 with a second ball joint 356 that includes a ball and a socket. As shown best in
As shown and described, the first and second arms 351, 352 of the control arm 305 can be telescopically adjusted to shorten or lengthen the distance between the first end of the second arm 352 and the first end of the first arm 351 to in turn increase or decrease the distance between the sprayhead 303 and the base 302. The force necessary to adjust the first and second arms 351, 352 telescopically can be tailored to specific applications.
The control arm 305 (as well as any other adjustable control arm disclosed in this application) may be configured with a locking feature that can selectively lock the first and second arms 351, 352 in a position (e.g., an extended position, a retracted position, etc.). The locking feature may lock the arms of the control arm 305 in a set number of positions or may lock the arms in any relative arrangement.
The faucet 401 may include a handle for controlling an operation of faucet 401. As shown in
As shown in
The collar 407 of the faucet 401 is rotatably coupled to an end (shown as the top end) of the base 402. For example, the collar 407 may be configured as a sleeve (e.g., a generally cylindrical element) that fits over a supporting element (e.g., a support sleeve, a bearing, etc.) of the base 402 to support rotation of the collar 407 relative to the base 402.
The control arm 405 of the faucet 401 is fixed relative to the collar 407 such that rotation of the collar 407 rotates the control arm 405 by the same amount (e.g., the same angular rotation about a longitudinal axis 420 of the collar 407, as shown in
As shown best in
According to another example, the sprayhead 403 includes the magnet and the control arm 405 includes a ferromagnetic connecting feature/element, such as a recess to receive the magnet. It is noted that the magnet and ferromagnetic connecting features may have other configurations and that the examples described herein are not limiting, but are exemplary.
The arrangement of the faucet 401 allows a user of the faucet to move the sprayhead 403 relative to the base 402 in a swinging motion along a circular arc about a rotational axis of the collar 407 (shown in
The arrangement of the faucet 401 also allows a user of the faucet to detach the sprayhead 403 from the control arm 405 such that the sprayhead 403 can reach objects outside of the radius of the arc of the control arm 405. When detached, the sprayhead 403 can be moved anywhere within a range defined by the flexible hose 404.
Like with the faucet 401, the collar 507 and the control arm 505 of the faucet 501 operate as one element. The collar 507 and the control arm 505 may be integrally formed as a unitary (e.g., single, non-separable) element, or formed separately then coupled together such that they operate/function together as one element. The collar 507 is configured the same as the collar 407, except where noted otherwise.
The control arm 505 includes two or more arms that are moveable relative to one another to allow for the length of the control arm 505 to be increased and decreased (e.g., to extend and retract the control arm 505). As shown best in
A first end 552a of the second arm 552 of the control arm 505 is coupled to the sprayhead 503 and a second end 552b of the second arm 552 is telescopically connected to the first arm 551. As shown, the first end 552a of the second arm 552 is coupled to the sprayhead 503 with a ball joint 555. The ball joint 555 includes a ball 556 and a socket 557 that receives the ball 556 and allows for relative movement (e.g., free rotation about the spherical ball) between the ball 556 and the socket 557. The ball 556 is part of the first end 552a of the second arm 552 or the sprayhead 503, and the socket 557 is part of the other of the sprayhead 503 and the first end 552a of the second arm 552. The ball joint 555 can be magnetized to allow for the sprayhead to be detached from the second arm 552, or the ball 556 and the socket 557 may be permanently connected together.
Thus, the first and second arms 551, 552 can be adjusted (e.g., telescopically) to shorten or lengthen the distance between the first end 552a of the second arm 552 and the first end 551a of the first arm 551, which in turn increases or decreases the distance between the sprayhead 503 and the base 502. The ball joint 555 also allows for free rotation of the sprayhead 503 relative to the control arm 505 (e.g., the first end 552a of the second arm 552) to further increase the range of coverage of the sprayhead 503.
As shown, the retainer and pivot assembly 160 includes a bushing assembly 161 and a tension assembly 163 coupled to the bushing assembly 161 and the control arm 150. The bushing assembly 161 facilitates rotation of the control arm 105 relative to the collar 107, and the tension assembly 163 maintains the rotational position of the control arm 105 relative to the collar 107 by maintaining a threshold friction, as discussed below in more detail.
The bushing assembly 161 includes a shaft 165 having a first shoulder 165a (e.g., inner shoulder) that engages the collar 107, as shown in
The shaft 165 also includes a second shoulder 165b (e.g., outer shoulder) that receives and supports part of the tension assembly 163. For example, the second shoulder 165b may support a bearing and/or a split ring, as discussed below in more detail. Disposed on the second shoulder 165b is a flange 165c for retaining the bearing and/or split ring onto the second shoulder 165b.
The bushing assembly 161 may include a fastener 167 that is configured to couple the control arm 105 to the bushing assembly 161. As shown in
The bushing assembly 161 may include a second bearing 168 that is configured to support rotation of the control arm 105 relative to the shaft 165. As shown in
The bushing assembly 161 may be coupled to the collar 107 using a locking plate 169 that engages a channel 165d (e.g., an undercut/recessed section relative to the adjacent sections) in the first shoulder 165a of the shaft 165 (see
As shown in
The cable 174 has an elongated portion 174a that extends through the coils of the spring 173, as well as a first end 174b and a second end 174c. The first end 174b of the cable 174 is fixedly coupled to the plug 175. For example, a fitting on the first end 174b may be configured to engage a slot 175a in a body 175b of the plug 175 to retain the cable 174 and fitting to the plug 175. The second end 174c of the cable 174 is coupled to the bushing assembly 161. As shown in
During rotation of the control arm 105 relative to the collar 107, the wound end of the cable 174 is rotated around shaft 165 with the control arm 105. The force from the spring 173 is transferred through the cable 174 to the split ring 177 and/or the bearing 176 to induce the threshold friction between the bushing assembly 161 (e.g., the shaft 165) and the tension assembly 163 (e.g., the split ring 177 and/or bearing 176). This threshold friction maintains the rotational position of the control arm 105 relative to the collar 107, so that the control arm 150 remains in the position without a user having to hold the arm in the selected position.
Other embodiments can be used to retain the position of the control arm 105 relative to the collar 107. For example, one or more spring washers or washers in combination with a spring could be employed to compress together in a direction along the longitudinal axis 165f to generate the threshold friction. It was found that this design had a reduced durability and less control over the friction force compared with the embodiment described above. Also, for example, two gears could be employed to generate the threshold friction. Each gear could include a flat annular element with teeth around a circumference (e.g., a crown gear), such that the teeth of the first gear engage the teeth of the second gear to hold the position until a threshold torque rotates one gear relative to the other gear. It was found that this design produce undesirable noise (e.g., clicking) during rotation and provides limited adjustment set by the number of teeth rather than infinite adjustment according to the above described embodiment.
The control arms disclosed in this application (e.g., control arms 105, 205, 305, 405, 505) or elements of the controls arms may include or be made with a spring biased material, shape memory material, or other suitable material that may provide additional utility (e.g., movement).
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
The terms “coupled,” “connected,” and the like, as used herein, mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The construction and arrangement of the elements of the faucets as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied.
Additionally, the word “exemplary” is used to mean serving as an example, instance, or illustration. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples). Rather, use of the word “exemplary” is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention. For example, any element (e.g., base, collar, hose, control arm, sprayhead, joint, etc.) disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. Also, for example, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 16/214,331, filed Dec. 10, 2018, which is a continuation of U.S. patent application Ser. No. 15/611,414, filed Jun. 1, 2017, now U.S. Pat. No. 10,233,618, which claims the benefit of U.S. Provisional Patent Application No. 62/345,372, filed Jun. 3, 2016. All of the aforementioned U.S. patent applications are hereby incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
62345372 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16214331 | Dec 2018 | US |
Child | 18145639 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15611414 | Jun 2017 | US |
Child | 16214331 | US |