The invention relates to faucets. More particularly, it relates to a faucet having a quick-connect coupling and/or a sealed chamber that may receive an electronics package or the like.
Many different kinds of drinking water purification systems are known and commercially available. The systems have been developed for use, e.g., in the home and are generally configured to be installed within an under sink compartment in the kitchen. A separate pure water dispensing faucet typically is mounted on the countertop or sink provided next to the regular tap water faucet of the kitchen sink.
The faucet of a drinking water purification system usually includes a base that is mounted over a hole in the countertop or sink with, e.g., bolts and nuts. The typical faucet also includes a body that is mounted on the base. The body normally includes a fluid intake that permits water to enter the faucet. It also has a valve assembly that controls fluid flow through a spout of the faucet.
Some drinking water purification systems include a quick-connect fitting that couples the body to the base. One example is a friction fitting. Although a friction fitting provides a rapidly engageable mechanism for coupling and decoupling the body to and from the base, friction fittings are not latchable in any particular rotational orientation. Thus, a user can turn the body relative to the base without ever knowing for sure that the two parts are properly connected. He or she may also improperly position the spout such that it discharges water against a wall or onto the floor or countertop rather than into a sink.
Another example of a quick-connect fitting for a faucet is one that includes fingers with outwardly projecting tabs on its base. In one such faucet, a base has upwardly projecting fingers, each of which is provided with an outwardly projecting tab. Corresponding apertures are formed in a hollow cylindrical surface of a cap of the body. The apertures receive the tabs when the cap is forced downwardly over the base. The fingers are resilient to the extent that they are deflected inwardly as the cap passes downwardly over them. The tabs then spring into the apertures as the body reaches its fully inserted position within the base, thus securing the body to the base. Although a user can couple the body to the base without the use of any tools, decoupling the body from the base requires the use of a tool such as a screwdriver to deflect the tabs to release them from the apertures.
Many drinking water purification systems include an electronics package that provides an indication of quality of the water and/or the state of the filtration system. For example, some packages include a light that is illuminated when a water filtration cartridge requires changing. Others include more sophisticated controls and displays. These electronics packages may corrode and/or short out when contacted by fluids. This susceptibility to water damage is problematic because the electronics package is typically housed in a chamber or compartment in the base. Previous systems have not taken adequate measures to prevent water from draining into this compartment from above or seeping into it from below.
In view of the foregoing, it would be desirable to provide a faucet that includes a quick-connect coupling that does not require the use of any tools for coupling and decoupling the faucet body to or from the base but that also securely retains the body in a desired position relative to the base.
It would also be desirable to provide a faucet that prevents water from seeping or running into a compartment within the base of a faucet.
The invention, which is defined by the claims set out at the end of this disclosure, is intended to solve at least some of the problems noted above.
In accordance with a first aspect of the invention, a faucet is provided that comprises a base, a body, and/or a bayonet fitting. The base is configured for mounting on a support surface such as a countertop or sink. The body supports a dispensing spout and a valve. The bayonet fitting is configured to connect the base to the body and to prevent forward rotation of the base relative to the body beyond a designated stroke and to thereafter permit backward rotation and disconnection of the body from the base without the use of any tools. The bayonet fitting preferably comprises at least two grooves formed in a circumferential surface of the base, and at least two circumferentially spaced projections on the body. The projections are configured to engage the grooves to secure the body to the base in a specific orientation between the body and the base.
In accordance of a second aspect of the invention, which may be employed either in conjunction with or independently of the first aspect, a faucet comprises a base which is configured to be mounted on a countertop or a sink and which has a chamber therein that may receive a water-sensitive device, a body which is removably mounted on the base and which supports a valve assembly and a spout, and a system of seals configured to seal the body to the base, the valve assembly to the body, and the base to the countertop or the sink so as to seal the chamber from fluid ingress.
Preferably the base comprises a pedestal which includes a bottom surface that rests on the countertop or sink, an outer peripheral wall, and an inner peripheral wall which is spaced from the outer wall. In this case, a seal retaining ring may be positioned within the bottom of the pedestal and may be notched at its outer periphery to define a seal-receiving groove between the notch of the seal retaining ring and an inner surface of the outer peripheral wall of the pedestal. The system of seals then includes an O-ring located in the seal-receiving groove to seal the chamber from below. The base may also contain a gasket to further seal the chamber from below.
The faucet preferably additionally comprises an air gap module that is housed in a vertical elliptical bore in the body and that includes a base portion, a mid-portion located adjacent the base portion, and a top portion located adjacent the mid-portion. In this case, the system of seals includes a first air gap O-ring located at the base portion and a second air gap O-ring located at the top portion.
The body may include an annular ring having a groove therein, in which case the pedestal preferably includes a bottom surface that rests on the countertop or sink, an outer peripheral wall, and an inner peripheral wall which is spaced from the outer wall and which is counterbored at an upper end thereof to receive the annular ring on the body. In this case, the system of seals preferably includes an O-ring disposed in the groove in the annular ring to seal the annular ring to the base.
Other aspects and advantages of the invention will become apparent to those skilled in the art from the following detailed description and the accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications could be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which:
Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
1. Resume
Pursuant to the invention, a faucet is provided for a drinking water purification system. The faucet includes a body and that can be coupled and decoupled to and from the base, preferably with a quick-connect bayonet fitting, thereby permitting coupling and decoupling of the body from the base without the use of any tools. The faucet also includes a chamber that may house an electronics package or another water sensitive device. The chamber is sealed from water by a system of seals provided between the body and the base and the base and the countertop, thus protecting any water sensitive devices in the compartment from water damage. The seals also prevent water dripping from an overflowing air gap from seeping between the body and the base or the base and the countertop or sink.
2. System Overview
Now referring to
Referring to
Referring to
Still referring to
Referring again to
The faucet 20 of the illustrated embodiment is configured for use with a reverse osmosis filter or other filter that may have a brine or waste water line. Regulations require that the brine lines of such filters incorporate an air break or air gap module 138 housed in a vertical elliptical bore 140 in the faucet body 22. The air gap module 138 includes a base portion 142, a mid-portion 144, and a top portion 146. The base and top portions 142 and 146 are sealed in the elliptical bore 140 by respective O-rings 148 and 150. The base 142 is coupled to a brine line (not shown) of the filter (not shown) by inlet and outlet fittings 152 and 154 that are coupled to inlet and outlet bores 158 and 160 in the air gap module 138. The bores 158 and 160 are in fluid communication with one another at the upper end of the top portion 146. An air gap aperture 136 extends horizontally through the upright portion 70 of the body 22 and into the outlet bore 160. As is conventional, brine from the filter flows in the inlet fitting 152, upwardly though the inlet bore 158 of the air gap module 138 into the outlet bore 160, past the air gap aperture 136, and out of the outlet fitting 154 to waste. Brine cannot flow in the opposite direction due to the presence of the air gap aperture 136.
3. Quick-Connect Fitting
Referring additionally to
Referring back to
Referring to
4. Sealed Chamber
The chamber 62 is sealed from fluid and may, if desired, house an electronics package and/or other water sensitive devices. Preferably, the chamber 62 is hermetically sealed. The O-rings prevent water from leaking either directly or indirectly into the chamber 62 or other parts of the faucet 20.
Referring now to
It can thus be seen that the O-rings prevent water from leaking either directly or indirectly into the chamber 62 or other parts of the faucet 20. Hence, an electronics package or any other water-sensitive faucet device may be housed in the chamber 62 or elsewhere within the pedestal 34 without concern about water contacting the electronics package, provided that any openings in the front of the base 24 are sealed with a water resistant pressure sensitive adhesive strip or the like. In addition, water cannot seep between the body 22 and the base 24 and hence below the countertop of sink.
5. Operation of the Faucet
In use, the base 24 is first positioned over the hole in the countertop 26 and coupled to an under-the-counter filter assembly (not shown) by the treated water fitting 105 and the brine fittings 152 and 154. It is then locked in position using a standard coupling such as a clamp arrangement (not shown), at which time the base 24 is sealed to the countertop 26 by the O-ring 66. An additional gasket (not shown) may also be positioned between the base 24 and the countertop 26. To couple the body 22 to the base 24, the body 22 is lowered over/into the base 24, with the tabs 172 on the projections 164 traversing the vertical leg 166 of the grooves 162 of the base 24, as is shown in
If desired, a more secure latching effect can be achieved by making the inner end of the horizontal leg 168 deeper than the remainder of the grooves 162 so that the tabs 172 snap into the deeper portions of the grooves 162 when the body 22 is rotated its maximum possible extent relative to the base 24. The resulting spring forces would have to be overcome to back the tabs 172 out of the deeper portion of the grooves 162 during disassembly.
Alternatively or in addition to the deeper grooves 162, the inner ends of the horizontal leg 168 could be located vertically above the remainder of the grooves 162 to form a J-shaped groove 162, requiring the body 22 to be raised at the end of its rotational stroke to place the tabs 172 in their “home” position. The tabs 172 would subsequently be lowered from this home position before the tabs 172 could be rotated to the inner ends of the grooves 162. The outer end of the horizontal leg 168 could also be lowered relative to the remainder of the horizontal leg 168 to achieve a similar effect.
When the knob 126 is in an open position shown in
To decouple the body 22 from the base 24, the body 22 is rotated in the opposite directions to move the tabs 172 of the projections 164 along the horizontal leg 168 of the associated grooves 162 and into alignment with the associated vertical leg 166. Once the tabs 172 meet the vertical leg 166, the body 22 be lifted from the base 24, with the tabs 172 traversing the vertical leg 166 of the grooves 162 until the body 22 is freed from the base 24, thereby decoupling the body 22 from the base 24. As should be apparent from the above, this decoupling does not require any tools, but requires more manual effort than is required to disassemble a friction fitting, particularly if the tabs 172 on the projections 164 must deflect out of deeper end portion of the horizontal leg 168 or over the protrusion 174 between the vertical leg 166 or horizontal leg 168 in the grooves 162 upon initial reverse rotation of the body 22 or if some other unlatching motion is required to initiate decoupling.
It is understood that the various preferred embodiments are shown and described above to illustrate different possible features of the invention and the varying ways in which these features may be combined. Apart from combining the different features of the above embodiments in varying ways, other modifications are also considered to be within the scope of the invention. The invention is not intended to be limited to the preferred embodiments described above, but rather is intended to be limited only by the claims set out below. Thus, the invention encompasses all alternate embodiments that fall literally or equivalently within the scope of these claims.
This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application Ser. No. 60/456,205, filed on Mar. 19, 2003, and entitled “Countertop Faucet,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1964836 | Wheaton | Jul 1934 | A |
4454891 | Dreibelbis et al. | Jun 1984 | A |
4518558 | Anway et al. | May 1985 | A |
4635673 | Gerdes | Jan 1987 | A |
4771485 | Traylor | Sep 1988 | A |
4785956 | Kepler et al. | Nov 1988 | A |
4852192 | Viegener | Aug 1989 | A |
4856121 | Traylor | Aug 1989 | A |
4967784 | Barhydt, Sr. et al. | Nov 1990 | A |
4998555 | Barhydt, Sr. et al. | Mar 1991 | A |
5127427 | Kajpust et al. | Jul 1992 | A |
5388287 | Tischler et al. | Feb 1995 | A |
5685341 | Chrysler et al. | Nov 1997 | A |
5819978 | Hlebovy | Oct 1998 | A |
5946746 | Bloom | Sep 1999 | A |
5952624 | Hornback et al. | Sep 1999 | A |
6006784 | Tsutsui et al. | Dec 1999 | A |
6110360 | Hart, Jr. | Aug 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040182459 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60456205 | Mar 2003 | US |