The general inventive concepts relate, among other things, to faucet assemblies and spout tubes for use therein and, more particularly, to a faucet assembly using a one-piece spout tube.
Some conventional faucets include a body formed from mating an upper shell and a lower shell. A waterway is formed in the body. The waterway is secured to the body using additional fasteners or structure. Water delivered to the faucet from a water supply source flows through the waterway and out the body. A valve assembly allows a user to control the flow rate and/or temperature of the water flowing through the waterway and out the body.
A faucet, according to one exemplary embodiment, includes an upper shell and a lower shell. The upper shell and the lower shell can interface (e.g., be fastened together) to form a spout body. The faucet also includes a cartridge seat, an aerator, and a spout tube. The cartridge seat, the aerator, and the spout tube can all be secured in the upper shell. The spout tube can interface with (e.g., fit in) the cartridge seat so that the spout tube and the cartridge seat are in fluid communication. The spout tube can also interface with (e.g., receive a portion of) the aerator so that the spout tube and the aerator are in fluid communication. By securing both the cartridge seat and the aerator in the upper shell, the spout tube is also secured in the upper shell.
In one exemplary embodiment, the cartridge seat is a one-piece structure. The cartridge seat can include a recess for receiving a seal member (e.g., an O-ring). In one exemplary embodiment, the spout tube is a one-piece structure. The spout tube can include a recess for receiving a seal member (e.g., an O-ring).
A faucet assembly, according to one exemplary embodiment, includes an upper shell and a lower shell. The upper shell and the lower shell can interface (e.g., be fastened together) to form a spout body. The faucet also includes a cartridge seat, an aerator, and a spout tube. The cartridge seat, the aerator, and the spout tube can all be secured in the upper shell. The spout tube can interface with (e.g., fit in) the cartridge seat so that the spout tube and the cartridge seat are in fluid communication. The spout tube can also interface with (e.g., receive a portion of) the aerator so that the spout tube and the aerator are in fluid communication. By securing both the cartridge seat and the aerator in the upper shell, the spout tube is also secured in the upper shell. The faucet assembly also includes mounting components (e.g., a stud, a clamp, a nut) for securing the spout body to a mounting surface (e.g., a deck).
A one-piece spout tube, according to one exemplary embodiment, is disclosed. The one-piece spout tube is a hollow body having a straight portion at a first end and an annular flange at a second end, and a generally curved portion extending between the first end and the second end. In one exemplary embodiment, the one-piece spout tube includes a recess for receiving a seal member (e.g., an O-ring). In one exemplary embodiment, the one-piece spout tube is made entirely of plastic. In one exemplary embodiment, the one-piece spout tube is made using a gas-assisted molding process.
Numerous advantages and features will become readily apparent from the following detailed description of exemplary embodiments, from the claims and from the accompanying drawings.
The general inventive concepts, as well as embodiments and advantages thereof, are described below in greater detail, by way of example, with reference to the drawings in which:
While the general inventive concepts are susceptible of embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the general inventive concepts. Accordingly, the general inventive concepts are not intended to be limited to the specific embodiments illustrated herein.
Referring to
The faucet assembly 100 includes several discrete components (see
The faucet components 102 include a spout upper shell or body 108 and a spout lower shell or body 110. The spout upper body 108 and the spout lower body 110 can be made, for example, of metal and/or plastic. In one exemplary embodiment, the spout upper body 108 and the spout lower body 110 are made of zinc, using a die casting process. The spout upper body 108 has a generally cylindrical body 112 from which a curved portion 114 extends (see
The faucet components 102 also include a cartridge seat 200 (see
The cartridge seat 200 is a one-piece body 202 having an upper surface 204 and a lower surface 206. A lower cold water passage 208 and a lower hot water passage 210 both extend from the lower surface 206 of the body 202 toward the upper surface 204 of the body 202. The upper surface 204 of the body 202 includes an upper cold water passage 212 and an upper hot water passage 214, which are in fluid communication with the lower cold water passage 208 and the lower hot water passage 210, respectively. The upper surface 204 of the body 202 also includes a mixed water inlet passage 216 that is in fluid communication with a mixed water outlet passage 218 formed in a side surface 220 of the body 202.
The faucet components 102 also include a waterway 300 (see
The faucet components 102 also include an aerator 400 (see
The faucet components 102 also include a valve cartridge 124, a retention nut 126, and a handle 128. The valve cartridge 124 includes a stem 130, wherein movement of the stem 130 is translated into movement of a movable valve member (e.g., a disc) in the valve cartridge 124. The handle 128 can be made, for example, of metal and/or plastic. In one exemplary embodiment, the handle 128 is made of zinc, using a die casting process.
The retention nut 126 is a hollow body sized to fit around an upper portion of the valve cartridge 124. In one exemplary embodiment, the retention nut 126 bears down on a ledge formed on the valve cartridge 124. Threads 132 are formed on at least a portion of an outer surface of the retention nut 126 (see
The mounting components 104 include a stud 136 and a nut 138. The stud 136 is a generally cylindrical shaft. Threads are formed on at least a portion of an outer surface of the stud 136. In one exemplary embodiment, the threads are formed along the entire length of the stud 136. The nut 138 includes threads that correspond to the threads on the stud 136, such that the nut 138 can be threaded onto the stud 136 (see
The mounting components 104 also include a clamp 144. The clamp 144 has an opening 146 extending through its length (see
The mounting components 104 include an escutcheon 150. The escutcheon 150 is an optional mounting component 104. For example, the escutcheon 150 can be used when the mounting surface (e.g., the deck 106) has three holes formed therein for mounting a hot water control member, a cold water control member, and a spout assembly, respectively. The escutcheon 150 is sized to cover the three holes and tapers up to an upper opening 152 formed in the escutcheon 150 (see
Other components of the faucet assembly 100 include a cold water supply hose 154 and a hot water supply hose 156 (see
In one exemplary embodiment, the faucet assembly 100 also includes a lift rod assembly 158 (see
In assembling the faucet assembly 100, the cartridge seat 200 interfaces with the upper cavity 116 of the spout upper body 108. In one exemplary embodiment, the cartridge seat 200 is shaped and/or sized so as to interference or friction fit into the upper cavity 116. In one exemplary embodiment, the cartridge seat 200 snaps to the spout upper body 108. The cartridge seat 200 could also be formed integrally with the spout upper body 108.
In one exemplary embodiment, an O-ring 164 is disposed in a groove 222 below the upper surface 204 of the cartridge seat 200 (see
The valve cartridge 124 is then inserted in the upper cavity 116 of the spout upper body 108 so that it rests on the cartridge seat 200. The valve cartridge 124 can include structure (e.g., keys) that interface with corresponding structure (e.g., keyways) formed in a portion of the cylindrical body 112 surrounding the upper cavity 116 to insure that the valve cartridge 124 is properly oriented within the faucet assembly 100. The valve cartridge 124 regulates the flow rate and mixture ratio of cold water and hot water delivered from the water supply source. For example, manipulation of the stem 130 of the valve cartridge 124 about a first axis controls the flow rate of the water and about a second axis controls the temperature of the water. In one exemplary embodiment, the first axis and the second axis are perpendicular to one another.
A retaining member, such as the retention nut 126, interfaces with (e.g., is screwed into) the cylindrical body 112 of the spout upper body 108 to secure the valve cartridge 124 and the cartridge seat 200 in the spout upper body 108 (see
The retention nut 126 has an annular shape so that a portion of the stem 130 of the valve cartridge 124 can extend through the retention nut 126 (see
Next, the waterway 300 interfaces with the cartridge seat 200. In particular, at least a portion of the straight portion 304 of the waterway 300 interfaces with (e.g., fits in) the mixed water outlet passage 218 of the cartridge seat 200 (see
The waterway 300 also interfaces with the spout upper body 108. For example, a shape of the waterway 300 generally corresponds to a shape of the curved portion 114 of the spout upper body 108 (see
Furthermore, an end of the curved portion 114 of the spout upper body 108 is shaped and/or sized to interface with or otherwise accommodate the annular flange 306 of the waterway 300. In one exemplary embodiment, the annular flange 306 clearance fits into the end of the curved portion 114 of the spout upper body 108. In one exemplary embodiment, the annular flange 306 interference or friction fits into the end of the curved portion 114 of the spout upper body 108. In one exemplary embodiment, the annular flange 306 snaps to the end of the curved portion 114 of the spout upper body 108.
The aerator 400 then interfaces with (e.g., screws into) the end of the curved portion 114 of the spout upper body 108. Accordingly, the aerator 400 can further secure the waterway 300 in the spout upper body 108. The O-ring 416 on the aerator 400 forms a water tight seal between the waterway 300 and the aerator 400.
One end of the cold water supply hose 154 extends through the cavity 122 of the spout lower body 110 and into the cavity 116 of the spout upper body 108 to interface with (e.g., fit in) the lower cold water passage 208 of the cartridge seat 200. Likewise, one end of the hot water supply hose 156 extends through the cavity 122 and into the cavity 116 to interface with (e.g., fit in) the lower hot water passage 210 of the cartridge seat 200. In one exemplary embodiment, the water supply hoses 154 and 156 snap fit into the cartridge seat 200.
Once the water supply hoses 154 and 156 are interfaced with the cartridge seat 200, the spout lower body 110 interfaces with (e.g., is connected to) the spout upper body 108 to form a spout body 174 (see
If not done beforehand, the shaft portion 162 of the lift rod assembly 158 can be inserted through an opening 178 in the spout lower body 110 (see
In one exemplary embodiment, the spout body 174, having the handle 128 secured thereto and the valve cartridge 124, cartridge seat 200, waterway 300 and aerator 400 secured therein, is then mounted to the deck 106. In one exemplary embodiment, the spout lower body 110 is mounted to the deck 106 prior to the spout lower body 110 interfacing with the spout upper body 108 to form the spout body 174.
If the escutcheon 150 is used to mount the spout body 174, an escutcheon gasket 180 is placed on the deck 106, such that at least one opening 182 extending through the escutcheon gasket 180 is disposed over a hole in the deck 106. In one exemplary embodiment, an adhesive is used to affix the escutcheon gasket 180 to the deck 106. The escutcheon 150 is disposed on, and either completely or mostly covers, the escutcheon gasket 180. The upper opening 152 of the escutcheon 150 is at least partially aligned with the opening 182 of the escutcheon gasket 180. The spout body 174 is then disposed on the escutcheon 150, such that the spout lower body 110 is aligned with the upper opening 152 of the escutcheon 150. A spout gasket 184 is positioned between the spout body 174 and the escutcheon 150 (see
If the escutcheon 150 is not used to mount the spout body 174, the spout body 174 is mounted directly on the deck 106. In this case, the spout lower body 110 is at least partially aligned with or otherwise disposed over the hole in the deck 106. The spout gasket 184 is positioned between the spout body 174 and the deck 106. The O-ring 186 interfaced with the spout gasket 184 forms a water tight seal between the spout body 174 and the deck 106. With the spout body 174 resting on the deck 106, the lower end of the shaft portion 162 of the lift rod assembly 158, and the water supply hoses 154 and 156, extend through the hole in the deck 106.
In one exemplary embodiment, if the faucet assembly 100 is being mounted for use with a vessel-type sink, one or more extensions (not shown) can be inserted between the spout body 174 and the deck 106, such that a height of the faucet assembly 100 is appropriate for the sink.
The clamp 144 is positioned below the deck 106, such that the opening 146 in the clamp 144 is at least partially aligned with the hole in the deck 106. The empty area 148 of the clamp 144 fits around the shaft portion 162 of the lift rod assembly 158, and the water supply hoses 154 and 156, extending through the deck 106.
The stud 136 is inserted through the opening 146 in the clamp and the hole in the deck 106. A portion of the stud 136 extending above the deck 106 and into the cavity 122 of the spout lower body 110 interfaces with (e.g., is screwed into) the spout body 174. The nut 138 is screwed onto a portion of the stud 136 extending below the deck 106 and the clamp 144. As the nut 138 is screwed onto the stud 136, the spout body 174 is pulled down against an upper surface of the deck 106 and the clamp 144 is pushed up against a lower surface of the deck 106. In this manner, the spout body 174 is securely mounted to the deck 106.
The lower end of the shaft portion 162 of the lift rod assembly 158 extends through the hole in the deck 106 and engages a stopper (not shown) for a drain (e.g., a sink drain). Movement of the lift rod assembly 158 (e.g., the knob 160) up and down causes the stopper to move between an opened and a closed position.
The cold water supply hose 154 and the hot water supply hose 156 operate to connect the water supply source to the faucet assembly 100. For example, another end of the cold water supply hose 154 (i.e., opposite the end interfaced with the cartridge seat 200) extends through the hole in the deck 106 and interfaces with (e.g., is connected to) a cold water supply pipe located under the deck 106. Likewise, another end of the hot water supply hose 156 (i.e., opposite the end interfaced with the cartridge seat 200) extends through the hole in the deck 106 and interfaces with (e.g., is connected to) a hot water supply pipe located under the deck 106. The cold water supply hose 154 and the hot water supply hose 156 deliver cold and hot water, respectively, from the water supply source to the faucet assembly 100.
The handle 128 allows a user to control the flow rate and/or temperature of the water flowing through the faucet assembly 100. The water flows from the water supply source, through the water supply hoses 154 and 156, the cartridge seat 200, the valve cartridge 124, and the waterway 300, and out the spout body 174 through the aerator 400, which defines a water flow path. Furthermore, all of these water flow components (i.e., the water supply hoses 154 and 156, the cartridge seat 200, the valve cartridge 124, the waterway 300, and the aerator 400) are mounted to the spout upper body 108 only, and not to the spout lower body 110.
As noted above, in one exemplary embodiment, the faucet assembly 100 uses a multi-piece cartridge seat, such as the cartridge seat 500 (see
As shown in
The upper member 600 interfaces with (e.g., supports) the valve cartridge 124 within the spout upper body 108. The upper member 600 is a one-piece body 602 having an upper surface 604 and a lower surface 606 (see
A diameter of the body 602 is largest near the upper surface 604, such that a flange portion 622 is formed near the upper surface 604 (see
The body 602 can have structure for orienting the cartridge seat 500 within the spout upper body 108. In one exemplary embodiment, a plurality of keys 626 extend outward from the flange portion 622 of the body 602 (see
A projection 628 extends from the lower surface 606 of the body 602 away from the upper surface 604 of the body 602 (see FIGS. 6A and 6F-6H). The projection 628 includes a pair of parallel fingers 630 which are separated by a gap 632. A ridge 634 also extends from the lower surface 606 of the body 602 away from the upper surface 604 of the body 602.
The lower member 700 interfaces with (e.g., receives ends of) the water supply hoses 154 and 156 within the spout upper body 108. The lower member 700 is a one-piece body 702 having an upper surface 704 and a lower surface 706 (see
A first recess 712 is formed in the body 702 (see
A second recess 714 is also formed in the body 702 (see
As noted above, the upper member 600 interfaces with the lower member 700 to form the cartridge seat 500. For example, the ridge 634 of the upper member 600 interfaces with (e.g., fits in) the first recess 712 of the lower member 700. In one exemplary embodiment, the ridge 634 friction fits in the first recess 712. In one exemplary embodiment, the ridge 634 fits in the first recess 712 in only one orientation of the upper member 600 relative to the lower member 700. The projection 628 of the upper member 600 interfaces with (e.g., fits in) the second recess 714 of the lower member 700. For example, the fingers 630 of the body 602 fit in the space 722 of the body 702. The sloped portions 720 of the second recess 714 can guide the fingers 630 of the projection 628 into the space 722. In one exemplary embodiment, the fingers 630 flex toward one another to friction fit into the space 722. Thus, at least one of the interface between the ridge 634 and the first recess 712 and the interface between the projection 628 and the second recess 714 secures the upper member 600 and the lower member 700 together to form the cartridge seat 500. Thereafter, the cartridge seat 500 can be assembled into the faucet assembly 100 as described above for the cartridge seat 200.
In view of the above, the faucet assembly 100 can represent a simpler and/or less expensive architecture than similar conventional faucet assemblies. For example, fewer parts are used in the faucet assembly 100. Unlike typical waterways, the waterway 300 is a one-piece body. A gas-assisted molding process can be used to make the waterway 300 having the desired shape (e.g., curvature) and features (e.g., the straight portion 304, the annular flange 306). The waterway 300 is mounted in the faucet assembly 100 without using any dedicated fasteners or connectors, such as screws or brackets. Instead, the waterway 300 is mounted in the faucet assembly 100 using existing components of the faucet assembly 100, such as the cartridge seat 200 or 500, the spout upper body 108, and/or the aerator 400.
Because the water flow components (i.e., the water supply hoses 154 and 156, the cartridge seat 200 or 500, the valve cartridge 124, the waterway 300, and the aerator 400) are all mounted to the spout upper body 108 only, the water flow components do not need to be manually positioned and/or held during the interfacing of the spout upper body 108 and the spout lower body 110, thereby simplifying assembly of the spout body 174. Furthermore, the faucet assembly 100 (e.g., the water flow path) can be tested before the spout lower body 110 is interfaced with the spout upper body 108.
As noted above, the reliability of the faucet assembly 100 can be improved, for example, by inclusion of the O-ring 164 on the cartridge seat 200 or 500. The O-ring 164 acts as a redundant seal to prevent water leaking below the mounting surface (e.g., the deck 106) in the event that the valve cartridge 124 fails.
The above description of specific embodiments has been given by way of example. From the disclosure given, those skilled in the art will not only understand the general inventive concepts and attendant advantages, but will also find apparent various changes and modifications to the structures and methods disclosed. It is sought, therefore, to cover all such changes and modifications as fall within the spirit and scope of the general inventive concepts, as defined by the appended claims, and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2781786 | Young | Feb 1957 | A |
3448768 | Keller | Jun 1969 | A |
3556140 | Politz | Jan 1971 | A |
3590876 | Young | Jul 1971 | A |
3796380 | Johnson et al. | Mar 1974 | A |
4026328 | Nelson | May 1977 | A |
4103709 | Fischer | Aug 1978 | A |
4387738 | Bisonaya et al. | Jun 1983 | A |
4513769 | Purcell | Apr 1985 | A |
4649958 | Purcell | Mar 1987 | A |
5131428 | Bory | Jul 1992 | A |
5165121 | McTargett et al. | Nov 1992 | A |
5555912 | Saadi et al. | Sep 1996 | A |
5746244 | Woolley et al. | May 1998 | A |
5797151 | Ko | Aug 1998 | A |
5937892 | Meisner et al. | Aug 1999 | A |
5960490 | Pitsch | Oct 1999 | A |
6161230 | Pitsch | Dec 2000 | A |
6170098 | Pitsch | Jan 2001 | B1 |
6189569 | Calhoun | Feb 2001 | B1 |
6202980 | Vincent et al. | Mar 2001 | B1 |
7003818 | McNerney et al. | Feb 2006 | B2 |
7055545 | Mascari et al. | Jun 2006 | B2 |
7134452 | Hiroshi et al. | Nov 2006 | B2 |
7174581 | McNerney et al. | Feb 2007 | B2 |
7766043 | Thomas et al. | Aug 2010 | B2 |
20030221254 | McNerney et al. | Dec 2003 | A1 |
20040117906 | Baker et al. | Jun 2004 | A1 |
20040154673 | Mascari et al. | Aug 2004 | A1 |
20050098221 | Mascari et al. | May 2005 | A1 |
20070271695 | Thomas et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100155505 A1 | Jun 2010 | US |