The present invention relates to faucets providing mixed water and air flow, including faucets having a faucet head with a control member to control a water valve enabling the mixing of water and air.
Control valves for faucets have various components, many of which are discrete parts that are assembled to ensure good water-tight seal and long-term durability or reliability. The manufacturing of faucets, however, can become complicated and expensive as the features, controls, and/or functions of faucets are revised over time.
For certain water faucet applications, one-touch valves were developed so a tap on an actuation element can control the water flow. An example of one-touch valves is those supplied by the 3M Company for mounting externally to a faucet. A one-touch valve may simplify the operation of a faucet. However, these one-touch valves are add-on components for placements at where water is discharged, i.e., directly at the outlet of a faucet. This also means that the valves are operated directly at the outlet where water flows through.
But adding a one-touch valve changes the overall design, dimension, and aesthetic appearance of a faucet, limiting the flexibility and/or attractiveness of the design or application. A post-sale-modification may raise reliability, durability, or repair issues. Further, operating a faucet outlet with hands, arms, or other parts of one's body, which may have grease, bacteria, or other contaminants may add grease, bacteria, or other contaminants to the faucet outlet itself, leading to hygiene or other concerns.
Conventional faucets contain handles to control water flow. When the faucet is operated in circumstances that require frequent on/off operations, having handles that are away from the location where water is discharged may cause inconvenience. Although placing a handle near the location where water is discharged may be a solution, it may limit design options. For example, if a faucet has a removable head that travels with a connecting hose, the location of the control may affect the faucet hose or faucet design or limit its portability. As another example, closing the distance between the location where water is discharged and the control handle may limit design aesthetics.
According to a disclosed embodiment, there is provided a faucet. The faucet can include a faucet base, a water hose, a faucet head, a chamber, a water valve, and a control member.
The faucet head can include a first and second end. The faucet base can be adapted to be mounted to support the faucet near the first end and to regulate a water flow through the faucet.
The water hose can be coupled with the faucet base by extending through the first end and second end of the faucet base. The water hose can be adapted to be flexible and movable through an opening in the first end and through an opening in the second end.
The faucet head can be movably coupled to the second end of the faucet base. The faucet head can be adapted to be dismountable from the second end of the faucet base while remaining coupled to the water hose to direct a mixture of water-and-air flow to a location away from the faucet base and to be relocated back to the second end the faucet base to discharge the mixture of water-and-air flow while being coupled to the faucet base.
The chamber can be provided within the faucet head and have a first end and a second end. The first end of the chamber can be coupled with the water hose and coupled, in a dismountable manner, to the second end of the faucet base. The second end of the chamber can provide an outlet to discharge the mixture of water-and-air flow.
The water valve can be provided within the chamber and located between the first end and the second end of the chamber. The water valve can include at least one air inlet and a water inlet to enable mixing air from the at least one air inlet with water from the water inlet. The water inlet can be coupled with the water hose. The at least one air inlet can be coupled with the chamber.
The water valve can further include a control valve movable within the water valve between a first position and a second position. The first position can enable mixing air from the at least one air inlet with water from the water inlet to provide the mixture of water-and-air flow. The second position can enable shut-off of the mixture of water-and-air flow. A direction of the control valve's movement between the first position and the second position can be substantially parallel to a direction of a water flow from the first end of the chamber to the second end of the chamber. The control valve can use a water pressure supplied by the water hose to facilitate an operation of the control valve.
The control member can be movably coupled with the faucet head. The control member can be adapted to enable an operation of the control valve within the water valve by pressing the control member from a side of the faucet head to move the control valve between the first position and the second position.
According to another disclosed embodiment, there is provided a faucet. The faucet can include a faucet base, a water hose, a faucet head, a water valve, and a control member.
The faucet base can have a first and second end.
The water hose can extend within the faucet base and can be movable through the second end of the faucet base.
The faucet head can have a first end, a second end, a chamber between the first and second end of the faucet head and coupled with the water hose, and an outlet coupled with the chamber at or near the second end of the faucet head to discharge a mixture of water-and-air flow. The first end of the faucet head can be adapted to be coupled to the second end of the faucet base while remaining coupled to the water hose and to be dismountable from the second end of the faucet base while remaining coupled to the water hose.
The water valve can be provided within the chamber. The water valve can include one or more air inlets and a water inlet to enable mixing air from the one or more air inlets with water from the water inlet. The water inlet can be coupled with the water hose. The one or more air inlets can be coupled with the chamber.
The water valve can further include a control valve movable within the water valve between a first position and a second position. The first position can enable mixing air from the air inlet with water from the water inlet to provide the mixture of water-and-air flow. The second position can enable shut-off of the mixture of water-and-air flow. The control valve can be adapted to move between the first position and the second position in a direction substantially parallel to a direction of a water flow from the first end of the faucet head to the second end of the faucet head. The control valve can use a water pressure supplied by the water hose to facilitate an operation of the control valve.
The control member can be movably coupled with the faucet head at a side of the faucet head. The control member can be adapted for user operation by pressing to cause the control valve to move between the first position and the second position.
According to yet another disclosed embodiment, there is provided a faucet. The faucet can include a faucet base, a water hose, a faucet head, a chamber, a water valve, and a control member.
The faucet base can have a first end, second end, and a water flow control coupled near the first end for regulating a water flow through the faucet. The first end of the faucet base can be adapted to be mounted to support the faucet.
The water hose can be accommodated between the first end and second end of the faucet base and movable through an opening near the first end and an opening near the second end of the faucet base.
The faucet head can be coupled to the water hose and, in a dismountable manner, to the second end of the faucet base while remaining coupled to the water hose.
The chamber can be provided within the faucet head. The chamber can have a first and second end. The first end of the chamber can be coupled with the water hose and can be coupled, in a dismountable manner, to the second end of the faucet base. The chamber can be adapted to discharge a mixture of water-and-air flow near the second end of the chamber.
The water valve can be provided within the chamber and located between the first and second end of the chamber. The water valve can include an air inlet and a water inlet to enable mixing air from the air inlet with water from the water inlet to provide the mixture of water-and-air flow. The water inlet can be coupled with the water hose. The air inlet can be coupled with the chamber.
The water valve can further include a control valve movable within the water valve between a first position and a second position in a direction approximately parallel with a direction of a water flow from the first end of the chamber to the second end of the chamber. The first position can enable mixing air from the air inlet with water from the water inlet to provide the mixture of water-and-air flow. The second position can enable shut-off of the mixture of water-and-air flow. An operation of the control valve can be facilitated by a water pressure supplied by the water hose.
The control member can be movably coupled with the faucet head. The control member can include a first surface being adapted for user operation in a direction approximately perpendicular to a side surface of the faucet head. The control member can further include a second surface mechanically coupled with the first surface. The second surface can be adapted to engage with the control valve in a way to move the control valve from the second position to the first position when the first surface is pressed.
Referring to
Faucet base 4 can be mounted to support the faucet near first end 401 and to regulate water flow through the faucet. Faucet base 4 can include a water flow control 5 coupled with water hose 2 and located near first end 401 of faucet base 4 to control an amount of water flowing through water hose 2 and to vary a mix of cold water and hot water going into water hose 2. For example, water flow control 5 can be mounted near a lower portion of faucet base 4 near a side opening of faucet base 4. Water flow control 5 can be coupled with water hose 2, a cold water intake, and a hot water intake to vary, when a water flow is enabled, a mix of cold water and hot water going into water hose 2.
Referring to
Referring to
For example, faucet head 1 can be dismountable from second end 402 of faucet base 4 while remaining coupled to water hose 2 to direct a mixture of water-and-air flow to a location away from faucet base 4 and to be relocated back to second end 402 of faucet base 4 to discharge the mixture of water-and-air flow while being coupled to faucet base 4.
Referring to
Water valve 30 can be positioned within chamber 11 and located between first end 111 and second end 112 of chamber 11. Water valve 30 can be accommodated in cylinder 20. Referring to
Alternatively or additionally, a center outlet 81 and/or a plurality of peripheral outlets 82, as shown in
Water valve 30 can include a control valve 301 movable within water valve 30 between a first position and a second position. The first position can be a position that enables mixing air from air inlets 302 with water from water inlet 305 to provide a mixture of water-and-air flow. The second position can be a position that enables shut-off of a mixture of water-and-air flow. A direction of the movement of control valve 301 between the first position and the second position can be substantially parallel with a direction of a water flow (or a water-and-air flow) from first end 111 to second end 112 of chamber 11. Control valve 301 can be adapted to use a water pressure supplied by water hose 2 to facilitate an operation of control valve 301, either in one direction or in both directions.
Water valve 30 can be a water-pressure-assisted aerator with a control valve. In one embodiment and referring to
Referring to
In one embodiment, the control valve may be coupled or equipped with a spring and a cam that moves or locks control valve in two or more different positions each time the driving member 31 is pressed. The design or operation may be similar to or a variation of those used in retractable/clicking pens. U.S. Pat. No. 3,819,282 discloses one example of such design. In one embodiment of control valve 301, a second/resting position can provide a water-tight seal and stop water flow. A first position can open the seal between control valve 301 and internal wall(s) of water 30, and the opening enables the water flow. A third position or additional positions are optional, and when used, it/they may keep the seal open, but modulate the water flow by providing a bigger (or smaller) gap(s) to provide more (or less) water flow than the water flow at the first position.
Driving member 31 can include a pin, rod, stem, tube, or an elongated structure protruding out of water valve 30. Driving member 31 can include a head for coupling with push member 40 and a body connected to the head for transmitting force and/or motion.
With reference to
As illustrated in
Control member 40 can include a first surface 411 and a second surface 422, which is mechanically coupled with first surface 411. First surface 411 can be adapted for user operation, such as to press control member 40 in a direction substantially perpendicular to a side surface of faucet head 1, such as a side surface of outer casing 40. Second surface 422 can be adapted to engage with control valve 301 to move control valve 301 from the second position to the first position when first surface 411 is pressed. Second surface 422 can be adapted to engage with control valve 301 to restore control valve 301 from the first position to the second position when first surface 411 is pressed again.
For example, control member 40 can include a press portion 41 including first surface 411 and a lever 42 including second surface 422. Lever 42 can be coupled to and extending from press portion 41. First surface 411 can be configured to be substantially perpendicular to second surface 422. A part of lever 42 can be limited in second orifice 22 of cylinder 20. First surface 411 can be an external face of control member 40. Control member can include an internal face 412 coupled with lever 42. First surface 411 can include a pressing zone 413 (
Control member 40 can include a button, a plate, a panel, a switch, a knob, a toggle, a stud, a key, or any structure having a surface adapted to enable user operation, such as press, push, or other movement. Second surface 422 can be adapted to engage with control valve 301. First surface 411 and second surface 422 can be provided through a uni-body construction or a multiple-part construction.
As discussed above, control valve 301 can be configured to remain in the first position after control member 40 is pressed and released. For example, control member 40 can be released after being pressed to cause control valve 301 to move to and remain in the first position until control member 40 is operated again, such as by pressing, to cause control valve 301 to move from the first position to the second position.
Control member 40 can also include a spring to return control member 40 to an initial position when control member 40 is not being operated. The spring may be part of water valve 30 to provide the spring force to return control member 40 to its initial position after a user operate or releases it. The spring may also be a spring separated from a spring of water valve 30 and be placed between control member 40 and one part of chamber 11.
Referring to
Outer casing 10 can include a wall 12 configured to define chamber 11. Outer casing 10 can include an opening 13 defined in wall 12 corresponding to control member 40 so that control member 40 can be pressed into and/or through opening 13 when pressing portion 41 is pressed, as shown in
Referring to
In another embodiment, first connection portion 23 of cylinder 20 can include at least one rotatable tab rotatably connecting with second connection portion 414 of control member 40, and second connection portion 414 can include at least one rotary shaft.
Referring to
Referring to
An extension of through hole 22 of cylinder 20 can be defined by two opposing limiters 221 formed proximate to through hole 22 so that movement of lever 42 of control member 40 can be limited between two limiters 221 after control member 40 is pressed or released.
Second connection portion 414 and pressing zone 413 of control member 40 can be located on two opposite sides of lever 42. As shown in
As illustrated in
Body 52 of pin 50 has can include a first seal washer 501 fitted thereon and sealing cavity 25 so as to prevent water leakage via through hole 26 from cavity 25, as illustrated in
Chamber 11 can provide a housing near second end 112 of chamber 11 to enclose a switch valve 70 guiding a flow of the water-and-air mixture between a stream discharge and a spray discharge. Switch valve 70 can be operated via a switch movably mounted on a side opening of faucet head 1.
For example, faucet head 1 can include switch valve 70 near second end 112 of chamber 11 to switch a flow of the water-and-air mixture between a stream discharge and a spray discharge. For example, switch valve 70 can be arranged on cylinder 20 and configured to switch a water flow between a stream discharge mode and a spray discharge mode. Faucet head 1 can include a water outlet 80, as shown in
With reference to
Second end 112 of chamber 11 can provide a stream discharge of a water-and-air mixture through center outlet 81 of water outlet 80 and a spray discharge of a mixture of water and air through the plurality of peripheral outlets 82 of water outlet 80. Center outlet 81 can be in communication with and discharge water from central channel 281. The plurality of peripheral outlets 82 can be in communication with and discharge water from peripheral channel 282. Center outlet 81 can include a foam generator 811 to produce foamy water.
Cylinder 20 can be adapted to match with a water outlet so as to discharge water from the at least one first orifice 21 in a particular discharge mode.
Referring to
When control valve 301 of water valve 30 is configured to operate automatically, driving member 31 can be driven to move control valve 301 to a position enabling water discharge. Thereafter, control valve 301 can move back to an original position to stop discharging water.
When control valve 301 is not configured to be automatic, control member 40 can be manually operated by the user to close control valve 301. Control member 40 can be operated to drive driving member 31 of water valve 30 to move control valve 301 to a position enabling shut-off of water.
Thus, water valve 30 can be driven by control member 40 so as to avoid touching and contaminating water valve 30. Control member 40 can be rotatably connected with cylinder 20 to simplify faucet head 1 and reduce fabrication cost.
Water valve 30 can be a pre-assembled assembly with a control valve, such as control valve 301, inside the water valve and with a driving member, such as driving member 31, protruding through one end of the water valve and coupled with the control valve to cause the control valve to move between a first and a second position, such as between the first and second position described above.
Faucet head 1 can be further adapted to discharge water in different discharge modes using means other than switch valve 70.
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
104127758 | Aug 2015 | TW | national |
This application is a Continuation-in-Part Application of application Ser. No. 15/189,087, which was filed Jun. 22, 2016.
Number | Date | Country | |
---|---|---|---|
Parent | 15189087 | Jun 2016 | US |
Child | 15853499 | US |