The present application relates generally to the field of heating, ventilation, and air conditioning (HVAC) control. More specifically, the present application relates to fault detection systems and methods for self-optimizing HVAC control.
Self-optimizing control strategies are used in the field of HVAC control to optimize the performance of one or more HVAC control loops. For example, in an air-side economizer application, a damper driven by a self-optimizing control strategy is used to minimize the energy consumption of an air handling unit (AHU) by using cool outside air to cool an indoor space (e.g., when conditioning outside air is more energy efficient than cooling and conditioning recirculated air).
Component malfunctioning in self-optimized control loops can present a number of problems. For example, a faulty component utilized in a self-optimized control loop can impair functionality and lead to energy waste rather than energy savings. More particularly, in the air-side economizer example, damper malfunctioning prevents acceptable air handling unit (AHU) operation. Damper faults include failed actuator, damper obstruction, de-coupled linkage, and other errors.
What is needed is a system and method for detecting faults in HVAC systems using self-optimizing control strategies.
One embodiment of the invention relates to a method for detecting a fault in a process system. The method includes modifying an input of the process system with a modifying signal. The method also includes monitoring an output of the process system for a signal component corresponding to a function of the modifying signal and determining that the fault exists based on at least one of a reduction of the signal component and an unexpected transformation of the signal component.
Another embodiment of the invention relates to a fault detection system for detecting a fault in a process system. The fault detection system includes a first circuit configured to modify an input of the process system with a modifying signal. The fault detection system further includes a second circuit configured to receive an output from the process system and configured to determine whether the fault exists based on at least one of a reduction of a signal component and an unexpected transformation of the signal component, wherein the signal component corresponds to a function of the modifying signal.
Another embodiment of the invention relates to a controller for detecting a fault in a process system. The controller includes a circuit configured to affect an input of the process system, the circuit configured to modify the input with a modifying signal, wherein the circuit is further configured to monitor an output of the process system for a signal component corresponding to a function of the modifying signal, and wherein the circuit is further configured to determine whether the fault exists based on at least one of a reduction of the signal component and an unexpected transformation of the signal component.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The disclosure will become more fully understood from the following detailed description, taking in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring generally to the figures, systems and methods for detecting faults in a self-optimizing control system are shown. A modified signal is applied to an input of a process system and an output of the process system is monitored for a signal component that is a function of the modified input signal. A fault is determined to exist based on a reduction of the signal component or an unexpected transformation of the signal component. Some of the embodiments described relate specifically to the use of a fault detection circuit with an extremum seeking controller. Perturbed inputs of the process system provided by the extremum seeking controller can be used for optimization purposes and for fault detection purposes, with the system determining that a fault exists when the perturbed input does not result in an expected and/or corresponding output. In the HVAC context, and particularly in the air-side economizer context, a self-optimizing control strategy used to adjust a damper that affects the outside air provided to an AHU can be monitored for faults by checking for the existence of an expected signal component at an output of the self-optimizing control strategy (e.g., by examining a performance measure of the process system used by the self-optimizing control strategy).
ESC is a class of self-optimizing control strategies that can dynamically search for inputs of an unknown and/or time-varying system to optimize performance of the system. One application for ESC is to provide economizer control to an AHU, seeking to optimize the behavior of a damper controlled by an actuator to minimize the power consumption of the AHU. ESC can also be used for other applications inside and outside the HVAC industry (e.g., wind turbine control, fluid pump control, energy delivery control, etc.). In an ESC strategy, a gradient of process system output with respect to process system input is typically obtained by slightly perturbing the operation of the system and applying a demodulation measure. Optimization of process system performance is obtained by driving the gradient towards zero by using an integrator or another mechanism for reducing the gradient in a closed-loop system.
According to other exemplary embodiments, building 2 may contain more AHUs. Each AHU may be assigned a zone (e.g., area 6, a set of areas, a room, part of a room, a floor, a part of a floor, etc.) of building 2 that the AHU is configured to affect (e.g., condition, cool, heat, ventilate, etc.). Each zone assigned to an AHU may be further subdivided through the use of variable air volume boxes or other HVAC configurations.
While the present application describes the invention with frequent reference to the application of air-side economizers in HVAC systems, the present invention may be utilized with applications and self-optimizing control loops other than those described herein.
Referring now to
Referring now to
In cold climates, the initial state of control is heating in state 301. The system starts up in state 301 to minimize the potential that cooling coil 244 and/or heating coil 240 will freeze. In state 301, valve 242 for heating coil 240 is controlled to modulate the flow of hot water, steam, or electricity to heating coil 240, thereby controlling the amount of energy transferred to the air in an effort to maintain the supply air temperature at the setpoint. Dampers 260, 262, and 264 are positioned for a minimum flow rate of outdoor air and there is no mechanical cooling, (i.e., chilled water valve 246 is closed). The minimum flow rate of outdoor air is the least amount required for satisfactory ventilation to the supply duct 290. For example, 20% of the air supplied to duct 290 is outdoor air. The condition for a transition to state 302 from state 301 is defined by the heating control signal remaining in the “No Heat Mode.” Such a mode occurs when valve 242 of heating coil 240 remains closed for a fixed period of time (i.e., heating of the supply air is not required during that period). This transition condition can result from the outdoor temperature rising to a point at which the air from supply duct 290 does not need mechanical heating or after the heating control signal has been at its minimum value (no-heat position) for a fixed period of time.
In state 302, the system is utilizing outdoor air to provide free cooling to the system. State 302 controls the supply air temperature by modulating dampers 260, 262, and 264 to adjust the mixing of outdoor air with return air (i.e., no mechanical heating or cooling). The amount of outdoor air that is mixed with the return air from return duct 292 is regulated to heat or cool the air being supplied via supply duct 290. Because there is no heating or mechanical cooling, the inability to achieve the setpoint temperature results in a transition to either state 301 or state 303. A transition occurs to state 301 for mechanical heating when either for a fixed period of time the flow of outdoor air is less than that required for proper ventilation or outdoor air inlet damper 262 remains in the minimum open position for a given period of time. The finite state machine makes a transition from state 302 to state 303 for mechanical cooling upon the damper control remaining in the maximum outdoor air position (e.g., 100% of the air supplied by the AHU is outdoor air) for a fixed period of time.
In state 303, chilled water valve 246 for cooling coil 244 is controlled to modulate the flow of chilled water and to control the amount of energy removed from the air. Further, ESC is used to modulate dampers 260, 262, and 264 to introduce an optimal amount of outdoor air into AHU 4. In an exemplary embodiment, a transition occurs to state 302 when the mechanical cooling does not occur for the fixed period of time (i.e., the cooling control is saturated in the no-cooling mode).
Referring now to
System 400 is shown to include a controller 402 (e.g., a local controller, a feedback controller) that provides an input (e.g., an actuating input) to process system 404. The input may be provided to process system 404 as a function of a setpoint (or other inputs) received by controller 402. Extremum seeking controller 406 receives one or more outputs (e.g., a performance measure) from process system 404 and provides an optimizing input to process system 404 to optimize the process system's behavior (e.g., to optimize energy consumption, etc.).
Referring now to
As shown in
It might be noted that, in various exemplary embodiments, the input modified for the purpose of fault detection may be other than an optimizing input. For example,
Referring still to
It might be noted that, in various exemplary embodiments, any one or more outputs from the process system may be used by the fault detection module to monitor for the modifying input. For example, in system 650 of
Referring now to
Referring now to
yp=p(u)=(u−uopt)2
where p(u) represents the performance map and uopt represents the value at which p(u) is minimized. The actual representative format of a performance map for any particular process system is system and application specific. Output signal y is passed through output dynamics 848 to provide signal yp, which is received by extremum seeking controller 820. The performance gradient signal is produced by perturbing the system by adding a dither signal to the ESC loop at processing element 832. Return signal yp (i.e., performance measure) is used to detect the performance gradient through the use of high-pass filter 822, a demodulation signal combined with (e.g., multiplied by) the output of high-pass filter 922 at processing element 924, and low-pass filter 826. The performance gradient is a function of the difference between u and uopt. The gradient signal is provided as an input to integrator 828 to drive the gradient to zero, optimizing the control loop.
While various embodiments described throughout this disclosure relate to minimizing an output signal, minimizing an error, minimizing a gradient, minimizing the performance map, and the like, it should be appreciated that various other optimizing systems may seek to maximize similar or different values, controlled variables, or performance measures relating to a process system.
Referring still to
Referring now to
Referring still to
Referring now to
Referring now to
Referring generally to the exemplary embodiments shown in
Referring now to
Referring now to
Referring now to
In the exemplary embodiment illustrated in
According to the exemplary embodiments shown in at least
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible. All such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
It should be noted that although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variations will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
The present application is a continuation of U.S. application Ser. No. 12/323,293, filed Nov. 25, 2008, which is a continuation-in-part of International Application No. PCT/US2008/070091, filed Jul. 15, 2008, which claims the benefit of U.S. Provisional Application No. 60/950,314, filed Jul. 17, 2007. The entire contents of U.S. application Ser. No. 12/323,293, PCT Application No. PCT/US2008/070091 and U.S. Provisional Application No. 60/950,314 are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2812141 | Sueda et al. | Nov 1957 | A |
3181791 | Axelrod | May 1965 | A |
4026251 | Schweitzer et al. | May 1977 | A |
4114807 | Naseck et al. | Sep 1978 | A |
4182180 | Mott | Jan 1980 | A |
4199101 | Bramow et al. | Apr 1980 | A |
4257238 | Kountz et al. | Mar 1981 | A |
4319461 | Shaw | Mar 1982 | A |
4367631 | Johnson et al. | Jan 1983 | A |
4512161 | Logan et al. | Apr 1985 | A |
4558595 | Kompelien | Dec 1985 | A |
4607789 | Bowman | Aug 1986 | A |
4872104 | Holsinger | Oct 1989 | A |
4876858 | Shaw et al. | Oct 1989 | A |
4942740 | Shaw et al. | Jul 1990 | A |
5251814 | Warashina et al. | Oct 1993 | A |
5346129 | Shah et al. | Sep 1994 | A |
5351855 | Nelson et al. | Oct 1994 | A |
5355305 | Seem et al. | Oct 1994 | A |
5414640 | Seem | May 1995 | A |
5461877 | Shaw et al. | Oct 1995 | A |
5467287 | Wenner et al. | Nov 1995 | A |
5506768 | Seem et al. | Apr 1996 | A |
5555195 | Jensen et al. | Sep 1996 | A |
5568377 | Seem et al. | Oct 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5623402 | Johnson | Apr 1997 | A |
5675979 | Shah | Oct 1997 | A |
5682329 | Seem et al. | Oct 1997 | A |
5746061 | Kramer | May 1998 | A |
5769315 | Drees | Jun 1998 | A |
5791408 | Seem | Aug 1998 | A |
5867384 | Drees et al. | Feb 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6098010 | Krener et al. | Aug 2000 | A |
6115713 | Pascucci et al. | Sep 2000 | A |
6118186 | Scott et al. | Sep 2000 | A |
6122605 | Drees et al. | Sep 2000 | A |
6161764 | Jatnieks | Dec 2000 | A |
6219590 | Bernaden, III et al. | Apr 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6265843 | West et al. | Jul 2001 | B1 |
6269650 | Shaw | Aug 2001 | B1 |
6296193 | West et al. | Oct 2001 | B1 |
6326758 | Discenzo | Dec 2001 | B1 |
6369716 | Abbas et al. | Apr 2002 | B1 |
6389331 | Jensen et al. | May 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6415617 | Seem | Jul 2002 | B1 |
6477439 | Bernaden, III et al. | Nov 2002 | B1 |
6594554 | Seem et al. | Jul 2003 | B1 |
6816811 | Seem | Nov 2004 | B2 |
6862540 | Welch et al. | Mar 2005 | B1 |
6937909 | Seem | Aug 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7050873 | Discenzo | May 2006 | B1 |
7113890 | Frerichs et al. | Sep 2006 | B2 |
7124637 | Singhal et al. | Oct 2006 | B2 |
7434413 | Wruck | Oct 2008 | B2 |
7578734 | Ahmed et al. | Aug 2009 | B2 |
7685830 | Thybo et al. | Mar 2010 | B2 |
7827813 | Seem | Nov 2010 | B2 |
8027742 | Seem et al. | Sep 2011 | B2 |
20030109963 | Oppedisano et al. | Jun 2003 | A1 |
20040164690 | Degner et al. | Aug 2004 | A1 |
20050006488 | Stanimirovic | Jan 2005 | A1 |
20050040250 | Wruck | Feb 2005 | A1 |
20060016201 | Kopel | Jan 2006 | A1 |
20060090467 | Crow | May 2006 | A1 |
20060259285 | Bahel et al. | Nov 2006 | A1 |
20070023533 | Liu | Feb 2007 | A1 |
20070191967 | Yo et al. | Aug 2007 | A1 |
20080097651 | Shah et al. | Apr 2008 | A1 |
20080179408 | Seem | Jul 2008 | A1 |
20080179409 | Seem | Jul 2008 | A1 |
20080277486 | Seem et al. | Nov 2008 | A1 |
20090001179 | Dempsey | Jan 2009 | A1 |
20090083583 | Seem et al. | Mar 2009 | A1 |
20090099698 | Masui et al. | Apr 2009 | A1 |
20090308941 | Patch | Dec 2009 | A1 |
20100082161 | Patch | Apr 2010 | A1 |
20100106328 | Li et al. | Apr 2010 | A1 |
20100106331 | Li et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
63231127 | Sep 1988 | JP |
04062352 | Feb 1992 | JP |
10047738 | Feb 1998 | JP |
535103 | Nov 1976 | SU |
WO 0068744 | Nov 2000 | WO |
WO 2009012269 | Jan 2009 | WO |
WO 2009012282 | Jan 2009 | WO |
Entry |
---|
90.1 User's Manual, Energy Standard for Buildings Except Low-Rise Residential Buildings, ANSI/ASHRAE/IESNA Standard 90.1-2004, 7 pages. |
Adetola et al., Adaptive Extremum-Seeking Receding Horizon Control of Nonlinear Systems, American Control Conference Proceedings, 2004, pp. 2937-2942. |
Adetola et al., Adaptive output feedback extremum seeking receding horizon control of linear systems, ScienceDirect, Elsevier, Journal of Process Control, 2006, pp. 521-533, vol. 16. |
Adetola et al., Parameter convergence in adaptive extremum-seeking control, ScienceDirect, Elsevier, automatica, available online Sep. 28, 2006, apges 105-110, vol. 43. |
Ariyur et al., Analysis and Design of Multivariable Extremum Seeking, Proceedings of the American Control Conference, Anchorage, Alaska, May 8-10, 2002, pp. 2903-2908. |
Ariyur et al., Multivariable Extremum Seeking Feedback: Analysis and Design, see IDS for date information, pp. 1-15. |
Ariyur et al., Real Time Optimization by Extremum Seeking Control, John Wiley & Sons, Oct. 2003, 230 pages. |
Ariyur et al., Slope Seeking and Application to Compressor Instability Control, Proceeding of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, Dec. 2002, pp. 3690-3697. |
Ariyur et al., Slope seeking: a generalization of extremum seeking, International Journal of Adaptive Control and Signal Processing, 2004, pp. 1-22, vol. 18. |
Ashrae Standard, Energy Standard for Buildings Except Low-Rise Residential Buildings I-P. Edition, ANSI/ASHRAE/IESNA Standard 90.1-2004, 4 pages. |
Astrom et al., Optimalizing Control, Adaptive Control Second Edition, 1995, pp. 214-230, Addison-Wesley Publishing Company, USA. |
Banaszuk et al., Adaptive Control of Combustion Instability Using Extremum-Seeking, Proceedings of the American Control Conference, Chicago, Illinois, Jun. 2000, pp. 416-422. |
Banavar et al., Functional Feedback in an Extremum Seeking Loop, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, Dec. 2001, pp. 1316-1321, 8 pages. |
Banavar, R.N., Extremum seeking loops with quadratic functions: estimation and control, International Journal of Control, 2003, pp. 1475-1482, vol. 76, No. 14. |
Beaudoin et al., Bluff-body drag reduction by extremum-seeking control, Journal of Fluids and Structures, 2006, pp. 973-978, vol. 22. |
Binetti et al., Control of Formation Flight via Extremum Seeking, Proceedings of the American Control Conference, Anchorage, Alaska, May 8-10, 2002, pp. 2848-2853. |
Blackman, P.F., Extremum-Seeking Regulators, An Exposition of Adaptive Control, Pergamon Press, 1962, 17 pages. |
Cowan, Review of Recent Commercial Roof Top Unit Field Studies in the Pacific Northwest and California, report for Northwest Power and Conservation Council and Regional Technical Forum, Oct. 8, 2004, 18 pages. |
DOE Federal Emergency Management Program, Actions You Can Take to Reduce Cooling Costs, taken from http://www1.eere.energy.gov/femp/pdfs/om—cooling.pdf, believed to be available May 2005, 8 pages. |
Drakunov et al., ABS Control Using Optimum Search via Sliding Modes, IEEE Transactions on Control Systems Technology, Mar. 1995, pp. 79-85, vol. 3, No. 1. |
Examination Report for G.B. Patent Application No. 1000634.4, mailed Aug. 30, 2011, 2 pages. |
Financial Times Energy, Inc. Economizers, Energy Design Resources, taken from http://www.energydesignresources.com/resource/28/, believed to be available by at least Jan. 2007, 30 pages. |
Guay et al., Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainities, ScienceDiet, Pergamon, Automatica, 2003, pp. 1283-1293. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/070091, mailed Sep. 30, 2009, 13 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/070118, mailed Oct. 19, 2009, 11 pages. |
Killingsworth et al., PID Turning Using Extremum Seeking, IEEE Control Systems Magazine, Feb. 2006, pp. 70-79. |
Krstic et al., Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica, Mar. 1997, vol. 36, pp. 595-601. |
Krstic, Miroslav, Extremum Seeking Control for Discrete-Time Systems; IEEE Transactions on Automatic Control, University of California Postprints, 2002, pp. 318-323, 8 pages. |
Krstic, Miroslav, Performance improvement and limitations in extremum seeking control, Dec. 1998, pp. 313-326, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA. |
Larsson, Stefan, Literature Study on Extremum Control, Control and Automation Laboratory, Nov. 2001, pp. 1-14, Department of Signals and Systems, Chalmers University of Technology. |
Leblanc, M. Sur l'electrification des Chemins de fer au Moyen de Courants Alternatifs de Frequence Elevee, Revue Generale de l'Electricite, 1922, 4 pages. |
Leyva et al., MPPT of Photovoltaic Systems using Extremum-Seeking Control, IEEE Transactions on Aerospace and Electronic Systems, Jan. 2006, vol. 42, No. 1, pp. 249-258. |
Li et al., Extremum Seeking Control of a Tunable Thermoacoustic Cooler, IEEE Transactions on Control Systems Technology, pp. 527-536, vol. 13, No. 4., Jul. 2005, pp. 527-536. |
Liu et al., Extremum-seeking with variable gain control for intensifying biogas production in anaerobic fermentation, Water Science & Technology, 2006, vol. 53, No. 4-5, pp. 35-44. |
Marcos et al., Adaptive extremum-seeking control of a continuous stirred tank bioreactor with Haldane's Kinetics, Journal of Process Control, 2004, vol. 14, pp. 317-328. |
Office Action for U.S. Appl. No. 11/699,859, dated Mar. 15, 2010, 12 pages. |
Office Action for U.S. Appl. No. 11/699,860 dated Jun. 9, 2010, 9 pages. |
Office Action for U.S. Appl. No. 11/699,860, dated Aug. 20, 2009, 18 pages. |
Office Action for U.S. Appl. No. 12/683,883, dated Sep. 19, 2011, 7 pages. |
Office Action for U.S. Appl. No. 12/323,293, dated Feb. 3, 2011, 10 pages. |
Office Action for U.S. Appl. No. 12/650,366, dated Oct. 20, 2011, 18 pages. |
Pan et al., Discrete-Time Extremum Seeking Algorithms, Proceedings of American Control Conference, Anchorage, Alaska, May 2002, pp. 3753-3758, 8 pages. |
Popovic et al., Extremum seeking methods for optimzation of variable cam timing engine operation, Proceedings of the American Control Conference, Jun. 4-6, 2003, Denver, CO, USA, pp. 3136-3141. |
Rotea, Analysis of Multivariable Extremum Seeking Algorithms, Proceedings of the American Control Conference, pp. 433-437, Jun. 2000, Chicago, IL, USA. |
Salsbury, A Controller for HVAC Systems with Embedded Fault Detection Capabilities Based on Simulation Models, presented at the International Building Simulation Conference in Kyoto, Japan, Sep. 1999, 8 pages. |
Sane et al., Building HVAC Control Systems—Role of Controls and Optimization, Proceedings of the American Control Conference Minneapolis, Minnesota, Jun. 14-16, 2006, 6 pages. |
Speyer et al., Extremum Seeking Loops with Assumed Functions, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000, pp. 142-147, 8 pages. |
Sternby, Extremum Control Systems—An Area for Adaptive Control?, see IDS for date information, 12 pages, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden. |
Teel et al., Solving Smooth and Nonsmooth Multivariable Extremum Seeking Problems by the Methods of Nonlinear Programming, Proceedings of American Control Conference, Arlington, Virgina, Jun. 2001, pp. 2394-2399, 8 pages. |
Teel, A.R., Lyapunov Methods in Nonsmooth Optimization, Part I: Quasi-Newton Algorithms for Lipschitz, Regular Functions, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000, pp. 112-117, 8 pages. |
Teel, A.R., Lyapunov Methods in Nonsmooth Optimization, Part II: Persistenly Exciting Finite Differences, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000, pp. 118-123, 8 pages. |
Titica et al., Adaptive Extremum Seeking Control of Fed-Batch Bioreactors, European Journal of Control, vol. 9, 2003, pp. 618-631. |
Tsien, H.S., Engineering Cybernetics, McGraw-Hill Book Company, Inc., 1954, 298 pages. |
Tunay, I., Antiskid Control for Aircraft via Etremum-Seeking, Proceedings of American Control Conference, Arlington, Virgina, Jun. 2001, pp. 665-670, 8 pages. |
Walsh, On the Application of Multi-Parameter Extremum Seeking Control, Proceedings of the American Control Conference, pp. 411-415, Jun. 2000, Chicago, IL, USA. |
Wang et al., Experimental Application of Extremum Seeking on an Axial-Flow Compressor, IEEE Transactions on Control Systems Technology, Mar. 2000, vol. 8, No. 2, pp. 300-309. |
Wang et al., Extremum Seeking for Limit Cycle Minimization, IEEE Transactions on Automatic Control, Dec. 2000, vol. 45, No. 12, pp. 2432-2437. |
Wang et al., Optimizing Bioreactors by Extremum Seeking, International Journal of Adaptive Control and Signal Processing, 1999, pp. 651-669. |
Yu et al., Extremum-Seeking Control Strategy for ABS System with Time Delay, Proceedings of American Control Conference, Anchorage, Alaska, May 2002, pp. 3753-3758, 8 pages. |
Yu et al., Extremum-Seeking Control via Sliding Mode with Periodic Search Signals, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, Dec. 2002, pp. 323-328, 8 pages. |
Zhang et al., Extremum-Seeking Nonlinear Controllers for a Human Exercise Machine, IEEE/ASME Transactions on Mechatronics, Apr. 2006, vol. 11, No. 2, pp. 233-240. |
Zhang, Y., Stability and Performance Tradeoff with Discrete Time Triangular Search Minimum Seeking, Proceedings of American Control Conference, Chicago, Illinois, Jun. 2000, pp. 423-427, 7 pages. |
Office Action for U.S. Appl. No. 13/325,971, mail date Dec. 18, 2012, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20110320045 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
60950314 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12323293 | Nov 2008 | US |
Child | 13226405 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2008/070091 | Jul 2008 | US |
Child | 12323293 | US |