Feature-based georegistration for mobile computing devices

Information

  • Patent Grant
  • 11954882
  • Patent Number
    11,954,882
  • Date Filed
    Thursday, June 17, 2021
    2 years ago
  • Date Issued
    Tuesday, April 9, 2024
    a month ago
Abstract
A method in a computing device includes: in a facility containing a plurality of support structures, capturing an image of a first support structure; detecting, in the image, a first feature set of the first support structure; selecting obtaining at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system; comparing the first feature set with the at least one reference feature set; and in response to determining that the first feature set matches the at least one reference feature set, determining a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository.
Description
BACKGROUND

Handling of items in environments such as retail facilities, warehouses, and the like, may be performed by staff operating transport vehicles (e.g. forklifts), on foot, or the like. Such facilities may be large and complex, and may contain a wide variety of items. In order to navigate a facility, a staff member may rely on a mobile computing device. However, given that these facilities are often indoors, locationing technologies such as the global positioning system (GPS) may not be reliably available. Indoor locationing technologies may be insufficiently accurate for some tasks expected of the staff.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a diagram of a facility containing a mobile computing device.



FIG. 2 is a diagram of data contained in the repository of FIG. 1.



FIG. 3 is a flowchart of a method of feature-based georegistration.



FIG. 4 is a diagram illustrating pose tracking by the mobile device of FIG. 1.



FIG. 5 is a diagram illustrating an example performance of blocks 305 and 310 of the method of FIG. 3.



FIG. 6 is a diagram illustrating overlay data presented by the device of FIG. 1.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a method in a computing device, the method comprising: in a facility containing a plurality of support structures, capturing an image of a first support structure; detecting, in the image, a first feature set of the first support structure; selecting at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system; comparing the first feature set with the at least one reference feature set; and in response to determining that the first feature set matches the at least one reference feature set, determining a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository.


Additional examples disclosed herein are directed to a computing device, comprising: a memory; and a processor configured to: in a facility containing a plurality of support structures, capture an image of a first support structure; detect, in the image, a first feature set of the first support structure; select at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system; compare the first feature set with the at least one reference feature set; and in response to determining that the first feature set matches the at least one reference feature set, determine a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository.



FIG. 1 illustrates an interior of a facility, such as a retail facility (e.g. a grocer). In other examples, the facility 100 can be a warehouse, a healthcare facility, a manufacturing facility, or the like. The facility 100 includes a plurality of support structures carrying items. In the illustrated example, the support structures include shelf modules 104, e.g. arranged in sets forming aisles 108. FIG. 1, specifically, illustrates two aisles 108 each formed by eight modules 104. The facility 100 can have a wide variety of layouts other than the example layout shown in FIG. 1.


The modules 104 include support surfaces, such as shelves, pegboards, and the like, to support items thereon. Certain components of one example module 104-1 in FIG. 1 are illustrated, including support surfaces 112 (three support surfaces 112, in the illustrated example) terminating in shelf edges 116, which face into the corresponding aisle. A shelf edge 116, as will be apparent to those skilled in the art, is a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, each shelf edge 116 is at an angle of about ninety degrees relative to the corresponding support surface 112 above that shelf edge 116 and the underside (not shown) of the support surface 112. In other examples, the angles between a shelf edge 116 and adjacent surfaces is more or less than ninety degrees.


The support surfaces 112 carry items 120 thereon, for retrieval by customers, workers and the like in the facility. As seen in FIG. 1, the support surfaces 112 are accessible from the aisle 108 into which the shelf edges 116 face. In some examples, each module 104 has a back wall 124 rendering the support surfaces 112 inaccessible from the opposite side of the module 104. In other examples, however, the module 104 can be open from both sides (e.g. the back wall 124 can be omitted). The modules 104 may include additional components, such as an aisle marker 128 affixed to a module 104 that is located at the end of an aisle 108.


As will be apparent, the facility 100 may contain a wide variety of items 120 disposed on the modules 104. The facility 100 may be sufficiently large, and/or contain a sufficient number of different types of items 120, to complicate navigation of the facility 100 by a worker 132, a customer or the like, e.g. to locate one or more particular items 120 or perform other tasks. Further, location-tracking technologies such as GPS may not be reliably available because the facility 100 in indoors. Although other location technologies may be available (e.g. wireless beacons and the like), the accuracy with which such technologies can locate a computing device operated by the worker 132 may be insufficient for some processes, including the generation of augmented reality overlays on a display of the device providing directional and/or task guidance to the worker 132. For the presentation of such overlays to appear to be physically associated with the module 104 and items 120 in the field of view of the worker 132 and/or the computing device, it may be necessary for the location of the device relative to the relevant module 104 to be known to within about a centimeter, for example.


The locations of the modules 104 are predefined in a facility coordinate system 136. The layout of items 120 on each module 104 is also predefined, and the location of each item (or group of the same item, as a support surface 112 often supports a contiguous group of a given item) can therefore be determined, as discussed further below. Providing directional guidance to the worker 132, however, involves also determining the location of the worker 132 in the facility coordinate system 136 with sufficient accuracy.


The worker 132 is therefore equipped with a mobile computing device 140, also referred to simply as a device 140. The device 140 can be a tablet computer, a smart phone, a wearable computer (e.g. smart glasses), or the like. As will be discussed in detail below, the device 140 is configured to implement certain functionality to track the pose (i.e. the location and orientation) of the device 140. Pose tracking can achieve the above-mentioned centimeter-level accuracy, but is performed in a coordinate system that is local to the device 140. The local coordinate system is generally arbitrarily defined by the device 140 at runtime, and therefore lacks a predetermined relationship to the facility coordinate system 136. The functionality implemented by the device 140 therefore also enables the generation of a transform between the above-mentioned local coordinate system and the facility coordinate system 136. The transform, once established, enables the device 140 to accurately determine its pose in the facility coordinate system 136, thus enabling the device 140 to provide directional guidance to the worker 132 and/or perform other location-based tasks.


The generation of the transform relies on a repository 144 of feature locations that is accessible to the device 140. The repository 144 can be stored at the device 140, or at another computing device that is accessible to the device 140 via a network deployed in the facility 100, e.g. a server connected to the network. As will be seen in greater detail below, the device 140 is configured to detect features on the modules 104, and to locate matching features from the repository 144, thereby allowing the device 140 to establish its current location and orientation in the facility 100.



FIG. 1 also illustrates certain internal components of the device 140. The device 140 includes a special-purpose controller, such as a processor 150, interconnected with a non-transitory computer readable storage medium, such as a memory 152. The memory 152 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 150 and the memory 152 each comprise one or more integrated circuits.


The device 140 also includes at least one input device 156 interconnected with the processor 150. The input device 156 is configured to receive input and provide data representative of the received input to the processor 150. The input device 156 includes any one of, or a suitable combination of, a touch screen, a keypad, a trigger button, a microphone, and the like. In addition, the device 140 includes a camera 158 including a suitable image sensor or combination of image sensors. The camera 158 is configured to capture images (e.g. single frames or video streams including sequences of image frames) for provision to the processor 150.


The device 140 also includes a display 160 (e.g. a flat-panel display integrated with the above-mentioned touch screen) interconnected with the processor 150, and configured to render data under the control of the processor 150. The client device 105 can also include one or more output devices in addition to the display 160, such as a speaker, a notification LED, and the like (not shown).


The device 140 also includes a communications interface 162 interconnected with the processor 150. The communications interface 162 includes any suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the client device 105 to communicate with other computing devices via wired and/or wireless links (e.g. over local or wide-area networks). The specific components of the communications interface 162 are selected based on the type(s) of network(s) or other links that the device 140 is required to communicate over.


Further, the device 140 includes a motion sensor 164, such as an inertial measurement unit (IMU) including one or more accelerometers, one or more gyroscopes, and/or one or more magnetometers. The motion sensor 164 is configured to generate data indicating detected movement of the device 140 and provide the data to the processor 150, for example to enable the processor 150 to perform the pose tracking (in a local coordinate system) mentioned earlier.


The memory 152 stores computer readable instructions for execution by the processor 150. In particular, the memory 152 stores a localization application 154 (also referred to simply as the application 154) which, when executed by the processor 150, configures the processor 150 to perform various functions discussed below in greater detail and related to the determination of device pose in the facility coordinate system 136. The application 154 may also be implemented as a suite of distinct applications in other examples.


The processor 150, when so configured by the execution of the application 154, may also be referred to as a navigational assistance controller 150. Those skilled in the art will appreciate that the functionality implemented by the processor 150 via the execution of the application 154 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, ASICs and the like in other embodiments.


Turning to FIG. 2, the contents of the repository 144 is discussed in greater detail. The repository 144, in general, contains locations and orientations of each of a variety of features in the facility 100. The locations and orientations of those features are defined in the facility coordinate system 136 in the repository 144. The repository can be constructed from disparate data sources, such as a facility layout 200 and a plurality of module layouts 204. The facility layout 200, for example, can specify the locations of each module 104 in the facility coordinate system 136, e.g. by coordinates of one or more corners of each module 104, and/or dimensions of the modules 104 (e.g. width, depth, and height). FIG. 2 illustrates the layout 200 in an overhead view, in which each module 104 may be defined by coordinates of a first corner 208 (e.g. the lower-left, forward corner) and a second corner (e.g. the upper-right, rearward corner).


In some examples, however, the facility layout 200 does not define the positions of features supported on or otherwise associated with each module 104. Module layouts 204 may define the positions of such features, in a coordinate system 216 specific to each module. In the illustrated example, the coordinate system 216 has an origin at the corner 208. In other examples, however, the origin of the coordinate system 216 can be in a different position than shown in FIG. 2.


The module layout 204 defines, in this example, the positions of various features of the module 104. The features defined by a module layout 204 can include shelf edges 116 (labelled as shelf edges 116-1, 116-2, and 116-3 in FIG. 2). Each shelf edge definition can include coordinates for one or more corners of the shelf edge, and/or dimensions of the shelf edge. The shelf edge definition can also include an indication of the orientation of the forward-facing surface of the shelf edge, such as a normal vector.


The features can also include label definitions 220, five examples of which are shown in FIG. 2. Each label definition 220 can include coordinates and/or dimensions for the label. The label definitions can also include normal vectors or other indications of orientation, as noted above in connection with the shelf edges 116. In addition, the label definitions 220 can include item identifiers such as universal product codes (UPC) or the like. The label definitions 220 can also include other item attributes, such as a price for the corresponding item 120 (which can be detected by the device 140 via optical character recognition (OCR)).


The features defined in the module layout 204 can also include item regions 224, indicating the coordinates and/or dimensions of a region of the corresponding module 104 where a specific item is expected to be placed. The item regions 224 can also indicate how many facings of the item are expected to be present, and can also include an indication of which label definition is associated with the region 224. In addition, the features defined in the module layout 204 can include item-specific information, such as an item name, brand, or the like, or other suitable information that appears on the items 120 and is therefore detectable from images captured by the device 140. The above information can include textual information detectable by the device 140 via OCR techniques, as well as images (e.g. logos and the like).


Further, the module definition 204 can include definitions of other features, such as the aisle marker 128 mentioned earlier. An aisle marker definition 228 shown in FIG. 2 can therefore include the location and/or dimensions of the aisle marker 128 in the coordinate system 216, as well as an orientation such as a normal vector. The definition 228 can also contain an indication of the appearance of the aisle marker 128 (e.g. the character “A” in this example, as seen in FIG. 1).


As seen in FIG. 2, the feature definitions in the module layout 204 may not directly indicate positions and orientations in the coordinate system 136. However, such positions and orientations can be readily determined for each module by determining a transform 232 between the coordinate system 136 and the module-specific coordinate system 216, for each module. The positions and orientations contained in the above-mentioned feature definitions can then be converted into positions and orientations in the coordinate system 136 using the transform 232. In the event that the facility layout 200 and the module layouts 204 are defined separately for the facility 100, prior to implementing the functionality described below the device 140 or another computing device can therefore perform the above conversions in order to prepare the repository 144. The repository 144 therefore contains a record for each of the above-mentioned features, indicating the positions and orientations of each feature in the coordinate system 136, as well as the other information noted above (e.g. prices, item identifiers, and the like). Once prepared, the repository 144 can be deployed to the device 140 (e.g. for storage in the memory 152), or to a network-accessible storage device that the device 140 can query.


Turning to FIG. 3, a method 300 of feature-based georegistration is shown. The method 300 will be discussed below in conjunction with its performance by the device 140. As will be apparent, multiple devices 140 may be deployed in the facility 100, and each device 140 can perform a separate instance of the method 300. In other examples, a computing device such as a server deployed in the facility, e.g. the server mentioned above as storing the repository 144, can perform the method 300 on behalf of the device 140. That is, the server can perform separate instances of the method 300 for each device 140 in the facility.


At block 305, the device 140 is configured to initiate local pose tracking. Initiation of pose tracking at block 305 occurs in response to execution of the application 154, e.g. in response to an input from the operator of the device 140, a command from another computing device, or the like. In general, local pose tracking involves initiation of a local coordinate system, created by the device 140 arbitrarily (and therefore without a predetermined relationship to the facility coordinate system 136). Of note, the pose of the local coordinate system created at block 305 relative to the facility coordinate system 136 may not be known.


Local pose tracking further involves capturing a sequence of images using the camera 158 and tracking the positions of features (e.g. surfaces, edges, corners, and the like) in the sequence. The positions of such features throughout the sequence of images, combined with data from the motion sensor 164, are used to track movement of the device 140, e.g. in six degrees of freedom. More specifically, the device 140 is configured to generate a sequence of poses of the device 140 in the local coordinate system.


Various mechanisms will occur to those skilled in the art to combine image and/or motion sensor data to generate pose estimations. Examples of such mechanisms include those implemented by the ARCore software development kit provided by Google LLC, and the ARKit software development kit provided by Apple Inc. Pose tracking, once initiated at block 305, continues throughout the remainder of the method 300. The frequency with which new pose estimates are generated by the device 140 varies, for example with the computational resources available to the device 140, the frame rate of the camera 158, and the like. For example, the device 140 may generate pose estimates at a frequency of about 30 Hz, although higher and lower frequencies are also contemplated.


Referring to FIG. 4, the device 140 is shown in isolation, to illustrate the representation of a pose of the device 140 according to the two distinct coordinate systems noted above (the facility coordinate system 136, and the local coordinate system). The pose of the device 140 is defined by a location 400, and an orientation 404, both of which are determined by the device 140 in a local coordinate system 406, via the image feature- and motion sensor-based locationing techniques mentioned above.


The location 400 represents the location of a centroid of the device 140 in the local coordinate system 406. In other examples, the location 400 can correspond to a different point of the device 140. The location 400 is therefore defined by an X coordinate 408 in the local coordinate system 406, a Y coordinate 412 in the local coordinate system 406, and an angle in the XY plane, e.g. an angle 416 relative to the X axis of the local coordinate system 406. As will be apparent, the local coordinate system 406 and the facility coordinate system 136 may be three-dimensional systems, and the pose of the device 140 may therefore be defined with an additional coordinate and two additional angles. However, in this example the vertical dimension is omitted for simplicity of illustration.


To make use of the pose of the device 140 for providing directional guidance or other functions within the facility 100, the pose of the device 140 can be transformed to a pose in the facility coordinate system 136. Such a transformation includes applying a translation and/or a rotation to the pose in the local coordinate system 406. The transformation is defined by the pose of the origin of the local coordinate system 406 within the facility coordinate system 136. The origin of the local coordinate system 406 has a pose defined by X and Y coordinates 420 and 424, respectively, in the facility coordinate system 136, as well as an angle 428, e.g. relative to the X axis of the facility coordinate system 136.


As noted above, the transformation between coordinate systems 136 and 406 may initially be unknown, as the local coordinate system 406 is generated arbitrarily by the device 140. Further, even when the above transformation is discovered (i.e. once the coordinates 420 and 424, and the angle 428, are available to the device 140), sensor drift, image processing artifacts, interruptions in the execution of the application 154, or the like, may result in the coordinates 408 and 412 and the angle 416 no longer accurately defining the true position of the device 140 once transformed via the coordinates 420 and 424, and the angle 428. Performance of the method 300 enables the device 140 to periodically adjust or update the pose of the origin of the local coordinate system 406 within the facility coordinate system 136.


Returning to FIG. 3, at block 310 the device 140 is configured to detect features of the support structures (the modules 104, in the present example), and generate one or more descriptors for such features. Feature detection and descriptor generation are performed on at least a subset of the images captured for use in local pose tracking. For example, the device 140 may perform feature detection on every tenth image frame captured in the local pose tracking process initiated at block 305. In other examples, the device 140 may perform feature detection on fewer frames, or more frames, up to and including every frame captured and processed for local pose tracking. The features detected at block 310 by the device 140 are those represented in the repository 144. That is, the device 140 is configured to detect shelf edges 116, labels, items 120, aisle markers 128, and the like. Various mechanisms of detecting such features from image data are available, and are therefore not detailed herein.



FIG. 5 illustrates a portion of the facility 100, with the device 140 at an actual pose 500 therein. The pose 500, as defined in the facility coordinate system 136, may not be known to the device 140 at this point, however. For example, execution of the application 154 at the device 140 may recently have been interrupted, such that the device 140 maintains a most recently known pose 504 in the facility coordinate system 136. As seen in FIG. 5, therefore, the perception of the device 140 relating to its current pose is inaccurate, although the pose of the device 140 relative to the local coordinate system 406 is known.



FIG. 5 also illustrates an image frame 508, captured during local pose tracking as initiated at block 305. From the image frame 508, at block 310 the device 140 is configured to detect a plurality of labels 512 (highlighted with hatching) mounted on shelf edges 116. The device 140 can also be configured to detect other features, such as items 120 and shelf edges 116, however the labels 512 will be discussed herein in isolation, for simplicity of illustration. Having detected the labels 512, the device 140 is configured to generate one or more descriptors representing the pattern formed by the labels 512 in the image 508. The descriptor(s) generated at block 310 enable comparison of the features detected by the device 140 with reference features for a given module 104 retrieved from the repository. A wide variety of descriptors may be employed at block 310. In the present example, the device 140 is configured to generate a descriptor vector 516 containing, for each row of labels 512 (e.g. each subset of labels 512 appearing on the same shelf edge 116), the proportion of the total number of labels 512 in the image 508 that appear in that row. The three proportions, in this example, are then concatenated with a total count of the labels 512 (eight, in this example).


Referring again to FIG. 3, at block 315, the device 140 is configured to select a region of the facility 100 and retrieve a reference set of features corresponding to the selected region from the repository 144. In this example, the region selected at block 315 is a module 104, which is selected based on the last known pose of the device 140 in the facility coordinate system 136. Thus, in the example shown in FIG. 5, the device 140 is configured to select the module 140-1 at block 315, since the last known pose 504 of the device is closest to the module 104-1. To select a module 104 or other suitable region at block 315, the device 140 can perform a nearest neighbor search or the like, to identify the module 104 with the smallest Euclidean distance between to the pose 504.


Having selected a module 104 (e.g. the module 104-1), the device 140 is configured to generate a descriptor set corresponding to the selected module 104, or to simply retrieve the descriptor set, if the repository 144 contains precomputed descriptor sets. As will be apparent, applying the same descriptor generation process to the module layout 204 (which corresponds to the module 104-1) yields the descriptor vector [0.4, 0.4, 0.2, 5] in this example. The device 140 can generate a plurality of descriptor vectors when more than one feature type is employed at blocks 310 and 315. For example, a second descriptor vector can be generated for shelf edges 116, a further descriptor vector for detected items 120, and so on.


For example, in implementations in which the device 140 is configured to detect the labels 512 (e.g. as bounding boxes in the captured image) as well as prices presented on the labels, e.g. via OCR, the device 140 can generate additional descriptors corresponding to the price strings. Such descriptors can include a vector combining each detected price string and the coordinates of the price string in the image, or other suitable information enabling the comparison of the detected price strings to reference data from the repository 144. In further examples, descriptors can be generated that combine the label positions and the price strings. In still further examples, e.g. in which the features detected at block 310 include barcodes on the labels 512, descriptors can be generated corresponding to the locations of the barcodes in the facility coordinate system, in addition to the data encoded in the barcodes and/or the symbology of the barcodes (e.g. whether each barcode is a one-dimensional or two-dimensional barcode, and/or the specific symbology of the barcode).


At block 320, the device 140 is configured to determine whether the descriptors generated at block 310 and those obtained at block 315 match. For example, the device 140 can compute any one or more of the Euclidean distance between the detected descriptors and the reference descriptors, the cosine similarity between the detected and reference descriptors, or the like. The distance or other measure of similarity can be compared to a configurable threshold to determine whether the descriptors match. In other examples, the device 140 can implement a binary model (e.g. a support vector machine (SVM), a random forest classifier, a multilayer perceptron (MLP), or the like). The binary model may accept the detected and reference descriptors as inputs, and generate an output indicating that the descriptors match, or do not match. As will be apparent, when the determination at block 320 is affirmative, it is likely that the module 104 in the image 508 is the same module 104 as selected at block 315. This, in turn, enables the device 140 to determine its pose within the facility 100.


In the present example, the determination at block 320 is negative, and the device 140 therefore proceeds to block 325. At block 325, the device 140 determines whether an exit criterion, or stop criterion, has been met. Given that the facility 100 may contain a large number of modules 104 (e.g. several hundred, in some facilities), it may be impractical to search the entire repository 144 for a match to the detected features. Therefore, the device 140 can determine at block 325 whether a permissible number of attempts (e.g. ten, although a wide variety of other limits may also be employed) at matching a reference set of features has been reached. When the determination at block 325 is negative, the device 140 selects a further region of the facility 100 at block 330, and obtains descriptors for the selected region from the repository before returning to block 320. The further region selected can be, for example, an adjacent region to the region selected at block 315 (or at the preceding performance of block 330).


If an affirmative determination is made at block 325, the device 140 proceeds to block 335, where a prompt can be generated (e.g. on the display 160 or other output device) to acquire an image of a unique anchor in the facility 100. For instance, the device 140 can instruct the operator (e.g. the worker 132) to place an aisle marker 128 in the field of view of the camera 158, and/or to approach a module 104 and scan a barcode (or other suitable machine readable indicium) on a label. Decoding a product identifier from a barcode, for example, may provide a unique location in the facility 100, allowing the device 140 to locate itself in the facility coordinate system 136.


In the example shown in FIG. 5, assuming that the module 104 adjacent to the module 104-1 is selected at block 330, the determination at block 320 is again negative. At a further performance of block 330, however, the module layout 204 corresponding to the module 104 depicted in the image 508 is selected. The determination at block 320 is therefore affirmative, and the device 140 proceeds to block 340.


At block 340, the device 140 is configured to update the transform between the local coordinate system 406 and the facility coordinate system 136. In particular, once the locations of the module 104 and the features thereon (such as the labels 512) are obtained from the repository 144, the device 140 is in possession of both the local poses of such features (from the pose tracking process initiated at block 305) and the poses of such features in the facility coordinate system 136. The device 140 can therefore determine, by comparing the local and facility-based poses of the features, the parameters 420, 424, and 428 that define the transform between coordinate systems 136 and 406.


Having determined an updated transform at block 340, the device 140 is configured to determine an updated pose of the device 140 itself in the facility coordinate system 136 at block 345. In particular, the device 140 is configured to apply the transform to the local pose of the device 140. Following updating of the device pose in the facility coordinate system 136, the device 140 returns to block 310 to repeat the above process. As will now be apparent, the next module 104 selected as a reference at block 315 is selected based on the newly updated device pose from block 345.


In addition to periodically updating the device pose in the facility coordinate system 136, the device 140 can also update the repository 144 itself in some examples. For instance, at block 350 the device 140 can determine whether a confidence level associated with the current local pose of the device 140 exceeds a configurable threshold. Other conditions may also be evaluated at block 350. For example, the determination at block 350 may be affirmative when local pose confidence exceeds the above-mentioned threshold, and the transform has been updated at block 340 within a certain time period (e.g. within the past five seconds). When such conditions are present, the device 140 can proceed to block 355, at which the device 140 is configured to update the contents of the repository for a location in the facility corresponding to the portion of the facility in the field of view of the camera 158. For example, the device 140 can determine the pose of a detected label 512 in the facility coordinate system 136 (using the transform from block 340). The device 140 can then transmit an update to the repository to insert the label 512 into the repository at the pose detected above. In some examples, the device 140 can be configured to query the repository 144 prior to submitting such an update, to determine whether a label is already present in the repository 144 at that pose, or within a threshold distance of that pose. When there is a mismatch between the repository 144 and the data observed by the device 140, the device 140 can generate an update request to the repository 144, to insert a label or other feature at the pose mentioned above. In this manner, the device 140 can act to update the repository when located with sufficient confidence, enabling changes to the layout of the facility 100 to be reflected in the repository 144 without the need to manually edit the repository 144.


In further examples, e.g. in which the repository 144 is stored at a central location such as a server as mentioned above, rather than updating the repository 144 at block 355, the device 140 can transmit an update indicator to the server for storage in connection with the repository 144. The update indicator can indicate that a discrepancy has been identified between the features defined at a given location in the repository 144, and the features observed by the device 140 at that location in the facility coordinate system 136. In other examples, the update indicator need not indicate a discrepancy, but rather can simply indicate the observed features in the facility for a given location in the repository (regardless of the current content of the repository 144 for that location). The update indicator therefore defines a proposed update to the repository 144 in the form of one or more features and the locations of those features in the coordinate frame of reference 136. Application of such an update to the repository 144 may be delayed until a predetermined threshold number of update indicators for the same location in the repository 144 have been stored (e.g., 5 or more indicators for the same location). For example, the device 140 or the above-mentioned server can determine how many update indicators have been received for the same location in the repository (each update indicator having been generated by a device 140 with sufficiently high predetermined local pose confidence, e.g. at or above 90% confidence). The device 140 or server can then apply the update at block 355 when the number of update indicators exceeds the threshold.


The update indicator, as noted above, can include a location in the coordinate system 136, as well as data to be updated at the repository 144, such as a label position and/or label content, an item location and/or appearance, or any other suitable feature set and the location(s) at which such features were detected by the device 140. As will now be apparent, updates to the repository 144 can be crowd-sourced from one or more devices 140, each configured to provide update indicators when locationing confidence is sufficiently high, as discussed above. The repository 144 can therefore be updated to correct erroneous data therein, and/or populated when some or all of the repository contains no data for certain locations.


Turning to FIG. 6, the device 140 can also employ the pose of the device 140 in the facility coordinate system 136 to control the display 160 or other output devices. For example, FIG. 6 illustrates the display 160, presenting an image 604 captured by the camera 158 from the sequence initiated at block 305. The display 160 also presents a virtual object overlay 608, e.g. rendered as a sign extending out from the module 104 into the aisle. The virtual object contains task data, e.g. instructing the worker 132 to correct a price label for a given item 120. Rendering the virtual object overlay 608 is enabled by accurate localization of the device 140 in the facility coordinate system, via the method 300. In further examples, the display 160 can present various other types of virtual objects, such as coupons, directional guidance to items, and the like. For example, a virtual object can be presented to an operator of the device 140 (e.g. a customer, staff member, or the like) instructing the operator to travel to one or more selected locations in the facility, to traverse a certain portion of the facility such as one or more of the aisles, while the device 140 performs the method 300. Thus, the task can result in the collection of data to populate, confirm and/or correct the contents of the repository 144 via the crowd-sourcing mechanism of processing update requests mentioned above. Such tasks may be deployed to a plurality of devices 140, and may also present incentives to operators of such devices to be fulfilled upon completion of the task (e.g. coupons to be presented at specified locations in the facility).


Variations to the above are contemplated. For example, the selection of reference modules 104 at blocks 315 and 330 can be performed based not only on the most recent known pose of the device 140 in the facility coordinate system 136. In some examples, another locationing technology, such as wireless beacons deployed in the facility 100, may be used to generate an estimate of the device location in the facility coordinate system 136. Although such an estimate may be insufficiently accurate for overlay rendering as shown in FIG. 6, the selection of a reference module 104 can be based on the estimate.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


Certain expressions may be employed herein to list combinations of elements. Examples of such expressions include: “at least one of A, B, and C”; “one or more of A, B, and C”; “at least one of A, B, or C”; “one or more of A, B, or C”. Unless expressly indicated otherwise, the above expressions encompass any combination of A and/or B and/or C.


It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method in a computing device, the method comprising: in a facility containing a plurality of support structures, capturing an image of a first support structure;detecting, in the image, a first feature set of the first support structure;selecting at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;comparing the first feature set with the at least one reference feature set; andin response to determining that the first feature set matches the at least one reference feature set, determining a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository;when a confidence level associated with the location of the mobile computing device in the facility coordinate system exceeds a first threshold, receiving an update indicator defining (i) at least one feature detected in the image and (ii) a location of the at least one feature determined from the location of the mobile computing device;crowd-sourcing updates to the repository by:determining whether a number of update indicators received from at least the mobile computing device for the location of the at least one feature exceeds a second threshold; andwhen the number exceeds the second threshold, updating the repository according to the update indicator.
  • 2. The method of claim 1, further comprising: in response to determining the location of the mobile computing device in the facility coordinate system, generating a transform between the facility coordinate system and a local coordinate system of the mobile computing device;capturing a sequence of further images; updating a local pose of the mobile computing device based on the sequence of further images; andupdating the location of the mobile computing device in the facility coordinate system using the local pose and the transform.
  • 3. The method of claim 2, further comprising: generating a confidence level associated with the local pose; andwhen the confidence level exceeds a threshold, updating the repository with at least one feature detected in the sequence of further images and a feature location corresponding to the local pose.
  • 4. The method of claim 1, wherein the set of features include one or more of: (i) shelf edges, (ii) price labels, (iii) barcode locations, (iv) barcode symbologies, and (v) items disposed on the support structure.
  • 5. The method of claim 1, wherein comparing the first feature set with the at least one reference feature set includes generating a descriptor for each of the first feature set and the reference set, and comparing the descriptors.
  • 6. The method of claim 5, wherein comparing the descriptors includes determining a similarity measure.
  • 7. The method of claim 4, wherein comparing the descriptors includes executing a binary model.
  • 8. The method of claim 1, further comprising: in response to determining that the first feature set does not match the reference feature set, obtaining a further reference feature set from the repository; andrepeating the comparing.
  • 9. The method of claim 8, further comprising: in response to determining that the first feature set does not match the reference feature set, determining whether an exit criterion has been met;when the exit criterion has been met, capturing a machine-readable indicium and determining a location of the mobile computing device in the facility frame of reference based on a location of the machine readable indicium in the repository.
  • 10. A computing device, comprising: a memory; anda processor configured to:in a facility containing a plurality of support structures, capture an image of a first support structure;detect, in the image, a first feature set of the first support structure;select at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;compare the first feature set with the at least one reference feature set; andin response to determining that the first feature set matches the at least one reference feature set, determine a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository;wherein the processor is further configured to:when a confidence level associated with the location of the mobile computing device in the facility coordinate system exceeds a first threshold, receive an update indicator defining (i) at least one feature detected in the image and (ii) a location of the at least one feature determined from the location of the mobile computing device;crowd-source updates to the repository by:determining whether a number of update indicators received from at least the mobile computing device for the location of the at least one feature exceeds a second threshold; andwhen the number exceeds the second threshold, updating the repository according to the update indicator.
  • 11. The computing device of claim 10, wherein the processor is further configured to: in response to determining the location of the mobile computing device in the facility coordinate system, generate a transform between the facility coordinate system and a local coordinate system of the mobile computing device;capture a sequence of further images; updating a local pose of the mobile computing device based on the sequence of further images; andupdate the location of the mobile computing device in the facility coordinate system using the local pose and the transform.
  • 12. The computing device of claim 11, wherein the processor is further configured to: generate a confidence level associated with the local pose; andwhen the confidence level exceeds a threshold, update the repository with at least one feature detected in the sequence of further images and a feature location corresponding to the local pose.
  • 13. The computing device of claim 10, wherein the set of features include one or more of: (i) shelf edges, (ii) price labels, (iii) barcode locations, (iv) barcode symbologies, and (iv) items disposed on the support structure.
  • 14. The computing device of claim 10, wherein the processor is configured, to compare the first feature set with the at least one reference feature set, to generate a descriptor for each of the first feature set and the reference set, and comparing the descriptors.
  • 15. The computing device of claim 14, wherein the processor is configured, to compare the descriptors, to determine a similarity measure.
  • 16. The computing device of claim 14, wherein the processor is configured, to compare the descriptors, to execute a binary model.
  • 17. The computing device of claim 10, wherein the processor is further configured to: in response to determining that the first feature set does not match the reference feature set, obtain a further reference feature set from the repository; andrepeat the comparing.
  • 18. The computing device of claim 17, wherein the processor is further configured to: in response to determining that the first feature set does not match the reference feature set, determine whether an exit criterion has been met;when the exit criterion has been met, capture a machine-readable indicium and determine a location of the mobile computing device in the facility frame of reference based on a location of the machine readable indicium in the repository.
  • 19. A method in a computing device, the method comprising: in a facility containing a plurality of support structures, capturing an image of a first support structure;detecting, in the image, a first feature set of the first support structure;selecting at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;comparing the first feature set with the at least one reference feature set;in response to determining that the first feature set matches the at least one reference feature set, determining a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository;in response to determining the location of the mobile computing device in the facility coordinate system, generating a transform between the facility coordinate system and a local coordinate system of the mobile computing device;capturing a sequence of further images; updating a local pose of the mobile computing device based on the sequence of further images;updating the location of the mobile computing device in the facility coordinate system using the local pose and the transform;generating a confidence level associated with the local pose; andwhen the confidence level exceeds a threshold, updating the repository with at least one feature detected in the sequence of further images and a feature location corresponding to the local pose.
  • 20. A method in a computing device, the method comprising: in a facility containing a plurality of support structures, capturing an image of a first support structure;detecting, in the image, a first feature set of the first support structure;selecting at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;comparing the first feature set with the at least one reference feature set; andin response to determining that the first feature set matches the at least one reference feature set, determining a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository;in response to determining that the first feature set does not match the reference feature set, determining whether an exit criterion has been met;when the exit criterion has been met, capturing a machine-readable indicium and determining a location of the mobile computing device in the facility frame of reference based on a location of the machine readable indicium in the repository.
  • 21. A computing device, comprising: a memory; anda processor configured to:in a facility containing a plurality of support structures, capture an image of a first support structure;detect, in the image, a first feature set of the first support structure;select at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;compare the first feature set with the at least one reference feature set;in response to determining that the first feature set matches the at least one reference feature set, determine a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository;generate a confidence level associated with the local pose; andwhen the confidence level exceeds a threshold, update the repository with at least one feature detected in the sequence of further images and a feature location corresponding to the local pose.
  • 22. A computing device, comprising: a memory; anda processor configured to:in a facility containing a plurality of support structures, capture an image of a first support structure;detect, in the image, a first feature set of the first support structure;select at least one reference feature set by proximity to an estimated location of the mobile computing device in the facility coordinate system, the at least one reference feature set selected from a repository defining feature locations for each of the support structures in a facility coordinate system;compare the first feature set with the at least one reference feature set; andin response to determining that the first feature set matches the at least one reference feature set, determine a location of the mobile computing device in the facility coordinate system based on the image and the feature locations from the repository; andin response to determining that the first feature set does not match the reference feature set, determine whether an exit criterion has been met;when the exit criterion has been met, capture a machine-readable indicium and determine a location of the mobile computing device in the facility frame of reference based on a location of the machine readable indicium in the repository.
US Referenced Citations (518)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5423617 Marsh et al. Jun 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5704049 Briechle Dec 1997 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721723 Gibson et al. Apr 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8260742 Cognigni et al. Sep 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9072929 Rush et al. Jul 2015 B1
9120622 Elazary et al. Sep 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9547838 Larsen Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9779205 Namir Oct 2017 B2
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
9996818 Ren et al. Jun 2018 B1
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10133951 Mendonca et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10262294 Hahn et al. Apr 2019 B1
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
10429487 Fowe Oct 2019 B1
11003188 Scott et al. May 2021 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020059202 Hadzikadic et al. May 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040084527 Bong et al. May 2004 A1
20040131278 Imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050128195 Houston et al. Jun 2005 A1
20050174351 Chang Aug 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20050237320 Itoh et al. Oct 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060064286 Fink et al. Mar 2006 A1
20060078224 Hirosawa Apr 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060279527 Zehner et al. Dec 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080183730 Enga Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100009713 Freer Jan 2010 A1
20100017407 Beniyama et al. Jan 2010 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100161569 Schreter Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100257149 Cognigni et al. Oct 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110178708 Zhang Jul 2011 A1
20110188759 Filimonova et al. Aug 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110246503 Bender et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120017028 Tsirkin Jan 2012 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 Volkmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120278782 Pal et al. Nov 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130076586 Karhuketo et al. Mar 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130138534 Herwig May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130169681 Rasane et al. Jul 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130232039 Jackson et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130235206 Smith et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20130342363 Paek et al. Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140006229 Birch et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140088761 Shamlian et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140112537 Frank et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140133740 Plagemann et al. May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195095 Flohr et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140279294 Field-Darragh et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140316875 Tkachenko et al. Oct 2014 A1
20140330835 Boyer Nov 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150016712 Rhoads et al. Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150032304 Nakamura et al. Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150049955 Stoeffler Feb 2015 A1
20150052029 Wu et al. Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088701 Desmarais et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150195491 Shaburov et al. Jul 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150235157 Avegliano et al. Aug 2015 A1
20150243073 Chen et al. Aug 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310348 Dessouky et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150332368 Vartiainen et al. Nov 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150353280 Brazeau et al. Dec 2015 A1
20150355639 Versteeg et al. Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160042223 Suh et al. Feb 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 Bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160259329 High et al. Sep 2016 A1
20160260051 Wu et al. Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160290805 Irish et al. Oct 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160328767 Bonner et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20160375592 Szatmary et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170030538 Geisler et al. Feb 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170083774 Solar et al. Mar 2017 A1
20170084037 Barajas Hernandez et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170147966 Aversa et al. May 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170178227 Graham Jun 2017 A1
20170178301 Moraleda et al. Jun 2017 A1
20170178310 Gornish Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170205892 Petrovskaya et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170297478 Sherman et al. Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20170344016 Chen et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180075403 Mascorro Medina et al. Mar 2018 A1
20180089613 Chen et al. Mar 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180107999 Rizzolo et al. Apr 2018 A1
20180108120 Venable et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180129201 Douglas et al. May 2018 A1
20180130011 Jacobsson May 2018 A1
20180136648 Su et al. May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180190160 Bryan et al. Jul 2018 A1
20180197139 Hill Jul 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180218218 Madan et al. Aug 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180276596 Murthy et al. Sep 2018 A1
20180281191 Sinyavskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180293543 Tiwari Oct 2018 A1
20180306958 Goss et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180321692 Castillo-Effen et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190025838 Artes et al. Jan 2019 A1
20190034854 Borodow et al. Jan 2019 A1
20190049962 Ouellette et al. Feb 2019 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190073627 Nakdimon et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190094876 Moore et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190108678 Hazeghi et al. Apr 2019 A1
20190156513 McNeally May 2019 A1
20190160675 Paschall, II et al. May 2019 A1
20190178436 Mao et al. Jun 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197439 Wang Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190271984 Kingsford Sep 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190359300 Johnson et al. Nov 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
20190392506 Bogolea et al. Dec 2019 A1
20200049511 Sithiravel et al. Feb 2020 A1
20200053325 Deyle et al. Feb 2020 A1
20200064483 Li et al. Feb 2020 A1
20200068126 Fink et al. Feb 2020 A1
20200111267 Stauber et al. Apr 2020 A1
20200118064 Perrella et al. Apr 2020 A1
20200150655 Artes et al. May 2020 A1
20200192388 Zhang et al. Jun 2020 A1
20200314333 Liang et al. Oct 2020 A1
20200341151 Yoshida Oct 2020 A1
20200410766 Swaminathan Dec 2020 A1
20210019939 Hu et al. Jan 2021 A1
20210146552 Hong et al. May 2021 A1
20210163068 Zhu et al. Jun 2021 A1
20210233305 Garcia et al. Jul 2021 A1
20210271238 Ko et al. Sep 2021 A1
Foreign Referenced Citations (52)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
101809601 Aug 2008 CN
102214343 Oct 2011 CN
104200086 Dec 2014 CN
105701519 Dec 2015 CN
105989512 Oct 2016 CN
107067382 Aug 2017 CN
206952978 Feb 2018 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
3400113 Nov 2018 EP
3001567 Aug 2014 FR
2323238 Sep 1998 GB
2330265 Apr 1999 GB
2014170431 Sep 2014 JP
2016194834 Nov 2016 JP
2017016539 Jan 2017 JP
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014063157 Apr 2014 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127246 Aug 2015 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2017175312 Oct 2017 WO
WO 2017187106 Nov 2017 WO
WO 2017201483 Nov 2017 WO
WO 2018018007 Jan 2018 WO
WO 2018026631 Feb 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (113)
Entry
Boden, “French retail chain to roll out NFC shelf edge labels to six hypermarkets” (Sep. 19, 2018), pp. 1-7.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Castorena et al., “Autocalibration of lidar and optical cameras via edge alignment”, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (Mar. 20, 2016).
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE International Conference on IEEE, pp. 3656-3663, 2017.
Clark, “Casino to open world's first NFC-enabled supermarket”, (Sep. 19, 2018), pp. 1-7.
Clark, “Jogtek launches passive NFC shelf-edge labels”, (Sep. 19, 2018), pp. 1-6.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France. [hal-01097361].
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, 25-27, Sep. 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference On, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Gruen et al., “Automatic Reconstruction and Visualization of a Complex Buddha Tower of Bayon, Cambodia” (Sep. 2001) [http:www.idb.arch.ethz.ch/files/konstanz_bayonpaper.pdf].
Hackel et al., “Contour Detection in unstructured 3D point clouds,”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/CN2017/083143 dated Feb. 11, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/049761 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/051312 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/054103 dated Jan. 6, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/057007 dated Jan. 14, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/027948 dated Jul. 16, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/024805 dated Aug. 2, 2021.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/057388 dated Feb. 2, 2022.
International Search Report and Written Opinion for International Patent Application No. PCT/IB2021/060948 dated Feb. 4, 2022.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/037723 dated Jul. 20, 2022.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kaikai Liu et al., “Enabling Context-Aware Indoor Augmented Reality via Smartphone Sensing and Vision Tracking”, ACM Transactions on Multimedia Computing Communications and Applications, Association for Computer Machinery, US, vol. 12, No.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Meyersohn, “Walmart turns to robots and apps in stores”, https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom- store/index.html, Oct. 29, 2019.
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, p. 176-.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutroials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Rusu, et al. “Towards 3D Point cloud based object maps for household environments,” Science Direct, vol. 56, issue 11, pp. 927-947 [http://www.sciencedirect.com/science/article/pii/S0921889008001140]. Nov. 30, 2008. Retrieved from the internet on Jun. 15, 2022.
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzaliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference On, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
Zeng et al., Multi-view Self Supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge, May 7, 2017. Retrieved on Nov. 16, 2019 [https://arxiv.org/pdf/1609.09475.pdf].
Zhang et al., “Mobile computing and industrial augmented reality for real-time data access”, Emerging Technologies and Factory Automation, 2001, 8th IEEE International Conference on Oct. 15-18, 2001, pp. 583-588, vol. 2.
Alshawabkeh et al., “Automatic Multi-Image Photo-Texturing of Complex 3D Scenes”, CIPA 2005 XX International Symposium, (Sep. 26, 2005).
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Related Publications (1)
Number Date Country
20220405958 A1 Dec 2022 US