A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention disclosure relates to content management, and in particular, a system and method for integrating disparate content repositories.
Content repositories manage and provide access to large data stores such as a newspaper archives, advertisements, inventories, image collections, etc. A content repository can be a key component of a Web application such as a Web portal, which must quickly serve up different types of content in response to a particular user's requests. However, difficulties can arise when trying to integrate more than one vendor's content repository. Each may have its own proprietary application program interface (API), conventions for manipulating content, and data formats. Performing a search across different repositories, for example, could require using completely different search mechanisms and converting each repository's search results into a common format. Furthermore, each time a repository is added to an application, the application software must be modified to accommodate these differences.
The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
In the following description, various aspects of the present invention will be described. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some or all aspects of the present invention. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the present invention.
Parts of the description will be presented in data processing terms, such as data, selection, retrieval, generation, and so forth, consistent with the manner commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. As well understood by those skilled in the art, these quantities take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, and otherwise manipulated through electrical and/or optical components of a processor and its subsystems.
Various operations will be described as multiple discrete steps in turn, in a manner that is most helpful in understanding the present invention, however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
Various embodiments will be illustrated in terms of exemplary classes and/or objects in an object-oriented programming paradigm. It will be apparent to one skilled in the art that the present invention can be practiced using any number of different classes/objects, not merely those included here for illustrative purposes. Furthermore, it will also be apparent that the present invention is not limited to any particular software programming language or programming paradigm.
A virtual or federated content repository (hereinafter referred to as “VCR”) 100 is a logical representation of one or more individual content repositories 108 such that they appear and behave as a single content repository from an application program's 110 standpoint. This is accomplished in part by use of an API (application program interface) 104 and an SPI (service provider interface) 102. An API describes how an application program, library or process can interface with some program logic or functionality. By way of a non-limiting illustration, a process can include a thread, a server, a servlet, a portlet, a distributed object, a web browser, or a lightweight process. An SPI describes how a service provider (e.g., a content repository) can be integrated into a system of some kind. SPI's are typically specified as a collection of classes/interfaces, data structures and functions that work together to provide a programmatic means through which a service can be accessed and utilized. By way of a non-limiting example, APIs and SPIs can be specified in an object-oriented programming language, such as Java™ (available from Sun Microsystems, Inc. of Mountain View, Calif.) and C# (available from Microsoft Corp. of Redmond, Wash.). The API and SPI can be exposed in a number of ways, including but not limited to static libraries, dynamic link libraries, distributed objects, servers, class/interface instances, etc.
In one embodiment, the API presents a unified view of all repositories to application programs and enables them to navigate, perform CRUD (create, read, update, and delete) operations, and search across multiple content repositories as though they were a single repository. Content repositories that implement the SPI can “plug into” the VCR. The SPI includes a set of interfaces and services that repositories can implement and extend including schema management, hierarchy operations and CRUD operations. The API and SPI share a content model 106 that represents the combined content of all repositories 108 as a hierarchical namespace of nodes (or hierarchy). Given a node N, nodes that are hierarchically inferior to N are referred to as children of N whereas nodes that are hierarchically superior to N are referred to as parents of N. The top-most level of the hierarchy is called the federated root. There is no limit to the depth of the hierarchy.
In one embodiment, content repositories can be children of the federated root. Each content repository can have child nodes. Nodes can represent hierarchy information or content. Hierarchy nodes serve as a container for other nodes in the hierarchy akin to a file subdirectory in a hierarchical file system. Content nodes can have properties. In one embodiment, a property associates a name with a value of some kind. By way of a non-limiting illustration, a value can be a text string, a number, an image, an audio/visual presentation, binary data, etc. Either type of node can have a schema associated with it. A schema describes the data type of one or more of a node's properties.
Referring again to
In one embodiment, the API can include optimizations to improve the performance of interacting with the VCR. One or more content caches 216 can be used to buffer search results and recently accessed nodes. Content caches can include node caches and binary caches. A node cache can be used to provide fast access to recently accessed nodes. A binary cache can be used to provide fast access to the data associated with each node in a node cache. The API can also provide a configuration facility 214 to enable applications, tools and libraries to configure content caches and the VCR. In one embodiment, this facility can be implemented as a Java Management Extension (available from Sun Microsystems, Inc.). Exemplary configuration parameters are provided in Table 1.
In one embodiment, content and hierarchy nodes can be represented by a Node 402 (or node). A node has a name, an id, and can also include a path that uniquely specifies a node's location in the VCR hierarchy. By way of a non-limiting example, the path can be in a Unix-like directory path format such as ‘/a/b/c’ where ‘/’ is a federated root, ‘a’ is a repository, ‘b’ is a node in the ‘a’ repository, and ‘c’ is the node's name. The Node class provides methods by with a node's parent and children can be obtained. This is useful for applications and tools that need to traverse the VCR hierarchy (e.g., browsers). Nodes can be associated with zero or more Property 404 objects (or properties). A property can have a name and zero or more values 406. In one embodiment, a property's name is unique relative to the node to which the property is associated. A Value 406 can represent any value, including but not limited to binary, Boolean, date/time, floating point, integer or string values. If a property has more than one value associated with it, it is referred to as “multi-valued”.
A node's properties can be described by a schema. A schema can be referred to as “metadata” since it does not constitute the content (or “data”) of the VCR per se. Schemas can be represented by an ObjectClass 408 object and zero or more PropertyDefinition 410 objects. An ObjectClass has a schema name that uniquely identifies it within a content repository. A node can refer to a schema using the ObjectClass name. In another embodiment, a content node can define its own schema by referencing an ObjectClass object directly. In one embodiment, there is one PropertyDefinition object for each of a node's associated Property objects. PropertyDefinition objects define the shape or type of properties. Repositories and tools that operate on VCRs, such as hierarchical browsers, can utilize schemas. By way of a non-limiting example, a hierarchy node's schema could be used to provide information regarding its children or could be used to enforce a schema on them. By way of a further non-limiting example, a VCR browser could use a content node's schema in order to properly display the node's values.
In one embodiment, a PropertyDefinition can have a name and can describe a corresponding property's data type (e.g., binary, Boolean, string, double, calendar, long, reference to an external data source, etc.), whether it is required, whether it is read-only, whether it provides a default value, and whether it specifies a property choice type. A property choice can indicate if a property is a single unrestricted value, a single restricted value, a multiple unrestricted value, or a multiple restricted value. Properties that are single have only one value whereas properties that are multiple can have more than one value. If a property is restricted, its value(s) are chosen from a finite set of values. But if a property is unrestricted, any value(s) can be provided for it. PropertyChoice objects 412 can be associated with a PropertyDefinition object to define a set of value choices in the case where the PropertyDefinition is restricted. A choice can be designated as a default value, but only one choice can be a default for a given PropertyDefinition.
A PropertyDefinition object may also be designated as a primary property. By way of a non-limiting example, when a schema is associated with a node, the primary property of a node can be considered its default content. The is Primary( ) method of the PropertyDefinition class returns true if a PropertyDefinition object is the primary PropertyDefinition. By way of a further non-limiting example, if a node contained a binary property to hold an image, it could also contain a second binary property to represent a thumbnail view of the image. If the thumbnail view was the primary property, software applications such as browser could display it by default.
A ticket can utilize a user's credentials to authorize a service. In one embodiment, a ticket can be the access point for the following service interfaces: NodeOps 508, ObjectClassOps 506, and SearchOps 510. An application program can obtain objects that are compatible with these interfaces through the API RepositoryManager class. The NodeOps interface provides CRUD methods for nodes in the VCR. Nodes can be operated on based on their id or through their path in the node hierarchy. Table 2 summarizes NodeOp class functionality exposed in the API.
As with the NodeOps service, there is one SPI ObjectClassOps object per repository and a single API ObjectClassOps object. The API ObjectClassOps object maps requests to one or more SPI ObjectClassOps which in turn fulfill the requests using their respective repositories. Through this service, ObjectClass and PropertyDefinition objects can be operated on based on their id or through their path in the node hierarchy. Table 3 summarizes ObjectClassOps class functionality exposed in the API.
As with the NodeOps and ObjectClassOps services, there is one SPI SearchOps object per repository and a single API SearchOps object. The API SearchOps object maps requests to one or more SPI SearchOps, which in turn fulfill the requests using their respective repositories. Among other things, the SearchOps services allows applications and libraries to search for properties and/or values throughout the entire VCR. In one embodiment, searches can be conducted across all Property, Value, BinaryValue, ObjectClass, PropertyChoice and PropertyDefinitions objects in the VCR. Search expressions can include but are not limited to one or more logical expressions, Boolean operators, nested expressions, object names, function calls, mathematical functions, mathematical operators, string operators, image operators, and Structured Query Language (SQL). Table 4 summarizes SearchOps class functionality exposed in the API.
One embodiment may be implemented using a conventional general purpose or a specialized digital computer or microprocessor(s) programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The invention may also be implemented by the preparation of integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be readily apparent to those skilled in the art.
One embodiment includes a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the features presented herein. The storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
Stored on any one of the computer readable medium (media), the present invention includes software for controlling both the hardware of the general purpose/specialized computer or microprocessor, and for enabling the computer or microprocessor to interact with a human user or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, execution environments/containers, and user applications.
The foregoing description of the preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This application is a Continuation of U.S. application Ser. No. 11/325,006 entitled FEDERATED MANAGEMENT OF CONTENT REPOSITORIES, by James Owen et al., filed Jan. 3, 2006, which is a Continuation of U.S. application Ser. No. 10/618,513 entitled FEDERATED MANAGEMENT OF CONTENT REPOSITORIES, by James Owen et al., filed Jul. 11, 2003 issued as U.S. Pat. No. 7,293,286, on Nov. 6, 2007, which claims priority under 35 U.S.C. section 119(e) to U.S. Provisional Patent Application No. 60/449,154 entitled SYSTEM AND METHOD FOR A FEDERATED CONTENT REPOSITORY, by James Owen, et al., filed on Feb. 20, 2003 and U.S. Provisional Patent Application No. 60/451,174 entitled SYSTEMS AND METHODS FOR PORTAL AND WEB SERVER ADMINISTRATION, by Christopher Bales, et al., filed on Feb. 28, 2003. This application is related to the following co-pending applications which are each hereby incorporated by reference in their entirety: U.S. application Ser. No. 10/618,519 entitled VIRTUAL REPOSITORY CONTENT MODEL, by James Owen, et al., filed on Jul. 11, 2003; U.S. application Ser. No. 10/618,380 entitled VIRTUAL REPOSITORY COMPLEX CONTENT MODEL, by James Owen, et al., filed Jul. 11, 2003, issued as U.S. Pat. No. 7,415,478 on Aug. 19, 2008; U.S. application Ser. No. 10/618,495 entitled SYSTEM AND METHOD FOR A VIRTUAL CONTENT REPOSITORY, by James Owen, et al., filed Jul. 11, 2003; U.S. application Ser. No. 10/618,494 entitled VIRTUAL CONTENT REPOSITORY APPLICATION PROGRAM INTERFACE, by James Owen, et al., filed Jul. 11, 2003; U.S. application Ser. No. 10/619,165 entitled SYSTEM AND METHOD FOR SEARCHING A VIRTUAL REPOSITORY CONTENT, by Gregory Smith, filed Jul. 11, 2003; and U.S. application Ser. No. 10/618,379, VIRTUAL CONTENT REPOSITORY BROWSER, by Jalpesh Patadia et al., filed Jul. 11, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5047918 | Schwartz et al. | Sep 1991 | A |
5173919 | Schmidl et al. | Dec 1992 | A |
5173939 | Abadi et al. | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5335345 | Frieder et al. | Aug 1994 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5355474 | Thuraisingham et al. | Oct 1994 | A |
5369702 | Shanton | Nov 1994 | A |
5426747 | Weinreb et al. | Jun 1995 | A |
5475834 | Anglin et al. | Dec 1995 | A |
5481700 | Thuraisingham et al. | Jan 1996 | A |
5544322 | Cheng et al. | Aug 1996 | A |
5557747 | Rogers et al. | Sep 1996 | A |
5757669 | Christie et al. | May 1998 | A |
5797128 | Birnbaum et al. | Aug 1998 | A |
5806066 | Golshani et al. | Sep 1998 | A |
5806078 | Hug et al. | Sep 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5825883 | Archibald et al. | Oct 1998 | A |
5826000 | Hamilton | Oct 1998 | A |
5826268 | Schaefer et al. | Oct 1998 | A |
5848396 | Gerace | Dec 1998 | A |
5867667 | Butman et al. | Feb 1999 | A |
5872928 | Lewis et al. | Feb 1999 | A |
5889953 | Thebaut et al. | Mar 1999 | A |
5918210 | Rosenthal et al. | Jun 1999 | A |
5941947 | Brown et al. | Aug 1999 | A |
5950195 | Stockwell et al. | Sep 1999 | A |
5954798 | Shelton et al. | Sep 1999 | A |
5956400 | Chaum et al. | Sep 1999 | A |
5966707 | Van Huben et al. | Oct 1999 | A |
5987469 | Lewis et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991877 | Luckenbaugh | Nov 1999 | A |
6005571 | Pachauri | Dec 1999 | A |
6006194 | Merel | Dec 1999 | A |
6029144 | Barrett et al. | Feb 2000 | A |
6029182 | Nehab et al. | Feb 2000 | A |
6054910 | Tada et al. | Apr 2000 | A |
6055515 | Consentino et al. | Apr 2000 | A |
6055637 | Hudson et al. | Apr 2000 | A |
6058392 | Sampson et al. | May 2000 | A |
6073242 | Hardy et al. | Jun 2000 | A |
6088679 | Barkley | Jul 2000 | A |
6098173 | Elgressy et al. | Aug 2000 | A |
6105035 | Monge et al. | Aug 2000 | A |
6108687 | Craig | Aug 2000 | A |
6112024 | Almond et al. | Aug 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6141010 | Hoyle | Oct 2000 | A |
6141686 | Jackowski et al. | Oct 2000 | A |
6148333 | Guedalia et al. | Nov 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6157924 | Austin | Dec 2000 | A |
6158010 | Moriconi et al. | Dec 2000 | A |
6167407 | Nachenberg et al. | Dec 2000 | A |
6167445 | Gai et al. | Dec 2000 | A |
6170009 | Mandal et al. | Jan 2001 | B1 |
6182226 | Reid et al. | Jan 2001 | B1 |
6182277 | Degroot et al. | Jan 2001 | B1 |
6185587 | Bernardo et al. | Feb 2001 | B1 |
6202066 | Barkley et al. | Mar 2001 | B1 |
6202157 | Brownlie et al. | Mar 2001 | B1 |
6202207 | Donohue | Mar 2001 | B1 |
6209101 | Mitchem et al. | Mar 2001 | B1 |
6216134 | Heckerman et al. | Apr 2001 | B1 |
6216231 | Stubblebine | Apr 2001 | B1 |
6226745 | Wiederhold | May 2001 | B1 |
6241608 | Torango | Jun 2001 | B1 |
6243747 | Lewis et al. | Jun 2001 | B1 |
6253321 | Nikander et al. | Jun 2001 | B1 |
6256031 | Meijer et al. | Jul 2001 | B1 |
6260050 | Yost et al. | Jul 2001 | B1 |
6269393 | Yost et al. | Jul 2001 | B1 |
6269456 | Hodges et al. | Jul 2001 | B1 |
6275941 | Saito et al. | Aug 2001 | B1 |
6285366 | Ng et al. | Sep 2001 | B1 |
6285985 | Horstmann | Sep 2001 | B1 |
6292900 | Ngo et al. | Sep 2001 | B1 |
6295607 | Johnson | Sep 2001 | B1 |
6301613 | Ahlstrom et al. | Oct 2001 | B1 |
6308163 | Du et al. | Oct 2001 | B1 |
6317868 | Grimm et al. | Nov 2001 | B1 |
6327594 | Van Huben et al. | Dec 2001 | B1 |
6327618 | Ahlstrom et al. | Dec 2001 | B1 |
6327628 | Anuff et al. | Dec 2001 | B1 |
6339423 | Sampson et al. | Jan 2002 | B1 |
6339826 | Hayes et al. | Jan 2002 | B2 |
6341352 | Child et al. | Jan 2002 | B1 |
6353886 | Howard et al. | Mar 2002 | B1 |
6360363 | Moser et al. | Mar 2002 | B1 |
6363400 | Chtchetkine et al. | Mar 2002 | B1 |
6377973 | Gideon | Apr 2002 | B2 |
6381579 | Gervais | Apr 2002 | B1 |
6385627 | Cragun | May 2002 | B1 |
6393474 | Eichert et al. | May 2002 | B1 |
6397222 | Zellweger | May 2002 | B1 |
6397231 | Salisbury et al. | May 2002 | B1 |
6412070 | Van Dyke et al. | Jun 2002 | B1 |
6412077 | Roden et al. | Jun 2002 | B1 |
6418448 | Sarkar | Jul 2002 | B1 |
6430556 | Goldberg et al. | Aug 2002 | B1 |
6457007 | Kikuchi et al. | Sep 2002 | B1 |
6460052 | Thomas et al. | Oct 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6466239 | Ishikawa | Oct 2002 | B2 |
6473791 | Al-Ghosein et al. | Oct 2002 | B1 |
6477543 | Huang | Nov 2002 | B1 |
6477575 | Koeppel et al. | Nov 2002 | B1 |
6484177 | Van Huben et al. | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6487594 | Bahlmann | Nov 2002 | B1 |
6493732 | Aoyama et al. | Dec 2002 | B2 |
6510513 | Danieli | Jan 2003 | B1 |
6519647 | Howard et al. | Feb 2003 | B1 |
6530024 | Proctor | Mar 2003 | B1 |
6539375 | Kawasaki | Mar 2003 | B2 |
6571247 | Danno et al. | May 2003 | B1 |
6574736 | Andrews | Jun 2003 | B1 |
6581054 | Bogrett | Jun 2003 | B1 |
6581071 | Gustman et al. | Jun 2003 | B1 |
6584454 | Hummel, Jr. et al. | Jun 2003 | B1 |
6587849 | Mason et al. | Jul 2003 | B1 |
6587876 | Mahon et al. | Jul 2003 | B1 |
6615218 | Mandal et al. | Sep 2003 | B2 |
6618806 | Brown et al. | Sep 2003 | B1 |
6631386 | Arun et al. | Oct 2003 | B1 |
6633538 | Tanaka et al. | Oct 2003 | B1 |
6654747 | Van Huben et al. | Nov 2003 | B1 |
6665677 | Wotring et al. | Dec 2003 | B1 |
6684369 | Bernardo et al. | Jan 2004 | B1 |
6697805 | Choquier et al. | Feb 2004 | B1 |
6721888 | Liu et al. | Apr 2004 | B1 |
6732144 | Kizu et al. | May 2004 | B1 |
6735586 | Timmons | May 2004 | B2 |
6735701 | Jacobson | May 2004 | B1 |
6738789 | Multer | May 2004 | B2 |
6751659 | Fenger et al. | Jun 2004 | B1 |
6754672 | McLauchlin | Jun 2004 | B1 |
6757698 | McBride et al. | Jun 2004 | B2 |
6769095 | Brassard et al. | Jul 2004 | B1 |
6769118 | Garrison et al. | Jul 2004 | B2 |
6779002 | Mwaura | Aug 2004 | B1 |
6789202 | Ko et al. | Sep 2004 | B1 |
6834284 | Acker et al. | Dec 2004 | B2 |
6853997 | Wotring et al. | Feb 2005 | B2 |
6854035 | Dunham et al. | Feb 2005 | B2 |
6856999 | Flanagin et al. | Feb 2005 | B2 |
6857012 | Sim et al. | Feb 2005 | B2 |
6865549 | Connor | Mar 2005 | B1 |
6868425 | Bergstraesser et al. | Mar 2005 | B1 |
6880005 | Bell et al. | Apr 2005 | B1 |
6889222 | Zhao | May 2005 | B1 |
6901403 | Bata et al. | May 2005 | B1 |
6904454 | Stickler | Jun 2005 | B2 |
6912538 | Stapel et al. | Jun 2005 | B2 |
6918088 | Clark et al. | Jul 2005 | B2 |
6920457 | Pressmar | Jul 2005 | B2 |
6922695 | Skufca et al. | Jul 2005 | B2 |
6925487 | Kim | Aug 2005 | B2 |
6934934 | Osborne et al. | Aug 2005 | B1 |
6950825 | Chang et al. | Sep 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6961897 | Peel et al. | Nov 2005 | B1 |
6965999 | Fox et al. | Nov 2005 | B2 |
6970876 | Hotti et al. | Nov 2005 | B2 |
6978379 | Goh et al. | Dec 2005 | B1 |
6985905 | Prompt et al. | Jan 2006 | B2 |
6985915 | Somalwar et al. | Jan 2006 | B2 |
6988138 | Alcorn et al. | Jan 2006 | B1 |
7003578 | Kanada et al. | Feb 2006 | B2 |
7013485 | Brown et al. | Mar 2006 | B2 |
7020641 | Leong et al. | Mar 2006 | B2 |
7035857 | Reeves et al. | Apr 2006 | B2 |
7035879 | Shi et al. | Apr 2006 | B2 |
7035944 | Fletcher et al. | Apr 2006 | B2 |
7039923 | Kumar et al. | May 2006 | B2 |
7043472 | Aridor | May 2006 | B2 |
7047522 | Dixon et al. | May 2006 | B1 |
7051316 | Charisius et al. | May 2006 | B2 |
7054910 | Nordin et al. | May 2006 | B1 |
7058958 | Shutt et al. | Jun 2006 | B1 |
7062490 | Adya et al. | Jun 2006 | B2 |
7062511 | Poulsen | Jun 2006 | B1 |
7076652 | Ginter et al. | Jul 2006 | B2 |
7080000 | Cambridge | Jul 2006 | B1 |
7085755 | Bluhm et al. | Aug 2006 | B2 |
7089584 | Sharma | Aug 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7093261 | Harper et al. | Aug 2006 | B1 |
7093283 | Chen et al. | Aug 2006 | B1 |
7096224 | Murthy et al. | Aug 2006 | B2 |
7100195 | Underwood | Aug 2006 | B1 |
7117207 | Kerschberg et al. | Oct 2006 | B1 |
7124192 | High et al. | Oct 2006 | B2 |
7124413 | Klemm et al. | Oct 2006 | B1 |
7146564 | Kim et al. | Dec 2006 | B2 |
7174563 | Brownlie et al. | Feb 2007 | B1 |
7185192 | Kahn | Feb 2007 | B1 |
7219140 | Marl et al. | May 2007 | B2 |
7272625 | Hannel et al. | Sep 2007 | B1 |
7278106 | Mason | Oct 2007 | B1 |
7478096 | Margolus et al. | Jan 2009 | B2 |
7533115 | Chou et al. | May 2009 | B2 |
20010032128 | Kepecs | Oct 2001 | A1 |
20010034733 | Prompt et al. | Oct 2001 | A1 |
20010034771 | Hutsch et al. | Oct 2001 | A1 |
20020005867 | Gvily | Jan 2002 | A1 |
20020019827 | Shiman et al. | Feb 2002 | A1 |
20020029296 | Anuff et al. | Mar 2002 | A1 |
20020052849 | McCutchen et al. | May 2002 | A1 |
20020059394 | Sanders | May 2002 | A1 |
20020062451 | Scheidt et al. | May 2002 | A1 |
20020067370 | Forney et al. | Jun 2002 | A1 |
20020069261 | Bellare et al. | Jun 2002 | A1 |
20020103818 | Amberden | Aug 2002 | A1 |
20020107913 | Rivera et al. | Aug 2002 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020124053 | Adams et al. | Sep 2002 | A1 |
20020135617 | Samid | Sep 2002 | A1 |
20020143819 | Han et al. | Oct 2002 | A1 |
20020147645 | Alao et al. | Oct 2002 | A1 |
20020152210 | Johnson et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020152279 | Sollenberger et al. | Oct 2002 | A1 |
20020161903 | Besaw | Oct 2002 | A1 |
20020169893 | Chen et al. | Nov 2002 | A1 |
20020173971 | Stirpe et al. | Nov 2002 | A1 |
20020174097 | Rusch et al. | Nov 2002 | A1 |
20020178119 | Griffin et al. | Nov 2002 | A1 |
20020184521 | Lucovsky et al. | Dec 2002 | A1 |
20020188869 | Patrick | Dec 2002 | A1 |
20020194267 | Flesner et al. | Dec 2002 | A1 |
20030014442 | Shiigi et al. | Jan 2003 | A1 |
20030032409 | Hutcheson et al. | Feb 2003 | A1 |
20030037313 | Halpern et al. | Feb 2003 | A1 |
20030046576 | High et al. | Mar 2003 | A1 |
20030065681 | Houston et al. | Apr 2003 | A1 |
20030065721 | Roskind | Apr 2003 | A1 |
20030078972 | Tapissier et al. | Apr 2003 | A1 |
20030097365 | Stickler | May 2003 | A1 |
20030110448 | Haut et al. | Jun 2003 | A1 |
20030126464 | McDaniel et al. | Jul 2003 | A1 |
20030126558 | Griffin | Jul 2003 | A1 |
20030135490 | Barrett et al. | Jul 2003 | A1 |
20030135576 | Bodin | Jul 2003 | A1 |
20030146937 | Lee | Aug 2003 | A1 |
20030167315 | Chowdhry et al. | Sep 2003 | A1 |
20030167455 | Iborra et al. | Sep 2003 | A1 |
20030187956 | Belt et al. | Oct 2003 | A1 |
20030204481 | Lau | Oct 2003 | A1 |
20030212766 | Giles et al. | Nov 2003 | A1 |
20030216938 | Shour | Nov 2003 | A1 |
20030220913 | Doganata et al. | Nov 2003 | A1 |
20030220963 | Golovinsky et al. | Nov 2003 | A1 |
20040003071 | Mathew et al. | Jan 2004 | A1 |
20040019650 | Auvenshine | Jan 2004 | A1 |
20040024812 | Park et al. | Feb 2004 | A1 |
20040030744 | Rubin et al. | Feb 2004 | A1 |
20040030795 | Hesmer et al. | Feb 2004 | A1 |
20040044648 | Anfindsen et al. | Mar 2004 | A1 |
20040098467 | Dewey et al. | May 2004 | A1 |
20040098470 | Kurihara | May 2004 | A1 |
20040122897 | Seelemann et al. | Jun 2004 | A1 |
20040125144 | Yoon | Jul 2004 | A1 |
20040128559 | Zurko et al. | Jul 2004 | A1 |
20040162905 | Griffin | Aug 2004 | A1 |
20040167867 | Owen et al. | Aug 2004 | A1 |
20040167880 | Smith | Aug 2004 | A1 |
20040183831 | Ritchy et al. | Sep 2004 | A1 |
20040193606 | Arai et al. | Sep 2004 | A1 |
20040205473 | Fisher et al. | Oct 2004 | A1 |
20040205653 | Hadfield et al. | Oct 2004 | A1 |
20040230546 | Rogers | Nov 2004 | A1 |
20040249867 | Kraiss et al. | Dec 2004 | A1 |
20050015368 | Payton et al. | Jan 2005 | A1 |
20050021502 | Chen et al. | Jan 2005 | A1 |
20050021523 | Farag | Jan 2005 | A1 |
20050044103 | MacLeod et al. | Feb 2005 | A1 |
20050050184 | Boden et al. | Mar 2005 | A1 |
20050060324 | Johnson et al. | Mar 2005 | A1 |
20050060332 | Bernstein et al. | Mar 2005 | A1 |
20050080814 | Hailey et al. | Apr 2005 | A1 |
20050086206 | Balasubramanian | Apr 2005 | A1 |
20050086286 | Chi et al. | Apr 2005 | A1 |
20050097008 | Ehring et al. | May 2005 | A1 |
20050102535 | Patrick et al. | May 2005 | A1 |
20050102536 | Patrick et al. | May 2005 | A1 |
20050198617 | Kim et al. | Sep 2005 | A1 |
20050216462 | Xiao | Sep 2005 | A1 |
20050257267 | Williams et al. | Nov 2005 | A1 |
20060041661 | Erikson et al. | Feb 2006 | A1 |
20060059107 | Elmore et al. | Mar 2006 | A1 |
20060085412 | Johnson et al. | Apr 2006 | A1 |
20060122882 | Brown et al. | Jun 2006 | A1 |
20060184878 | Argo et al. | Aug 2006 | A1 |
20060212796 | Heuer et al. | Sep 2006 | A1 |
20070179954 | Kudoh et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
1 256 889 | Nov 2002 | EP |
0022547 | Apr 2000 | WO |
0038078 | Jun 2000 | WO |
0114962 | Mar 2001 | WO |
0167285 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080320022 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60449154 | Feb 2003 | US | |
60451174 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11325006 | Jan 2006 | US |
Child | 12201872 | US | |
Parent | 10618513 | Jul 2003 | US |
Child | 11325006 | US |