The present inventions relates to wood reduction equipment and more particularly to feed assemblies for a wood reduction apparatus.
Various machines are available on the market for reducing waste wood, such as scrap timber, tree limbs and brush. One common type of wood reduction machine is a wood grinder. Grinders typically operate by essentially hammering wood into wood fragments in a hammermill. For example, a conventional grinder may include a hammermill with a rotating drum. The drum carries a plurality of hammers that protrude from the surface of the drum. In use, wood waste is fed into the rotating drum. As the waste passes into the swath of the hammers, it is battered into wood fragments. The wood fragments may be driven by the hammermill through grates. The size of the holes in the grates may be selected to assist in controlling the size of the resulting wood waste.
A typical grinder includes an infeed assembly that delivers wood waste to the hammermill. For example, a conventional infeed assembly moves wood into a hammermill in a direction perpendicular to the axis of rotation of the hammermill. Because wood waste often includes brush, limbs and other waste that is most easily fed into the feed assembly in random piles or clumps, it is typically desirable to provide the grinder with a wide hammermill and a wide feed assembly that can accommodate wide piles or clumps of waste. Narrower feed system can require small piles or clumps and therefore may slow down feeding and operation of the grinder.
It has been determined that a hammermill will typically operate more efficiently when wood waste is fed into the hammermill at an angle to the longitudinal extent of the wood fibers. The wood grinding operation reduces wood waste principally through a combination of separating and shearing (e.g. cutting) wood fibers. Fiber shearing typically requires more force than fiber separation. Because wood fibers are typically extended along the length of a piece of wood, the amount of fiber shearing versus the amount of fiber separation will typically vary depending on the angle at which the wood item is fed into the hammermill. When the wood is fed perpendicularly into the hammermill, the ability of the hammers to separate the wood fibers is relatively limited and the hammers are required to shear a relatively large percentage of the wood fibers. When logs or other similar items are fed into the hammermill at an angle, the hammers typically have the ability to separate a larger percentage of the wood fibers and therefore require less wood shearing. Accordingly, less horsepower is generally required to grind logs fed into the hammermill at an angle than would be required if the logs were feed perpendicularly into the hammermill.
With limbs, brush and random clumps or piles of waste material, a conventional feed system will generally feed the waste into the hammermill so that individual items engage the hammermill in random orientations. This typically results is reasonably efficient operation for random clumps or piles. On the other hand, a conventional feed system will typically feed longer pieces of wood waste, such as logs and longer tree limbs, perpendicularly into the hammermill. This will typically require the hammermill to shear a relatively large percentage of the wood fibers and therefore require increased horsepower. Accordingly, a conventional wood reduction apparatus may not provide optimal performance with longer tree limbs and other similar items of waste that are typically fed perpendicularly into the hammermill.
The present invention provides a wood reduction apparatus with an adjustable feed system that is selectively adjustable to allow waste to be selectively directed into the mill along a perpendicular path or an angled path with respect to the mill. In one embodiment, the feed system includes a feed conveyor and a pair of sidewalls oriented perpendicularly to a hammermill. In this embodiment, the feed system includes at least one wall segment that is selectively pivotal to provide an angled wall that feeds wood waste in the mill at angle rather than perpendicularly. In one embodiment, the wall segment is selectively pivotal into the space over the feed conveyor.
In one embodiment, the wall segment includes a fixed end that is pivotally secured to the sidewall and a free end that is movable away the sidewall through operation of an actuator. In one embodiment, the actuator is a linear actuator, such as a hydraulic cylinder, coupled to a hinged arm assembly.
In one embodiment, the feed system includes a pair of wall segments that are selectively pivotal into the space over the feed conveyor from opposite sidewalls. The two wall segments may be mounted directly opposite one another on opposite sidewalls. The two wall segments may pivot from opposites ends so that they cooperatively define a feed space that extends at angle with respect to the mill.
The present invention provides a simple and effective structure that permits an infeed assembly to selectively feed wood waste into the mill in a direction perpendicular to the mill or in a direction that is angled with respect to the mill. This permits the infeed assembly to be selectively adjusted to the feed direction most suitable for the type of wood waste being fed into the wood reduction apparatus. Use of the present invention may reduce the horsepower required to reduce certain waste while maintaining relatively high flow through rates by permitting adjustment to the greatest possible infeed width.
These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiment and the drawings.
A wood grinder incorporating a feed assembly in accordance with the present invention is shown in
For purposes of disclosure and not by way of limitation, the present invention is described in connection with a wood reduction apparatus that is generally identical to the Morbark Model 3800 Wood Hog, which is available from Morbark, Inc. of Winn, Mich. The Morbark Model 3800 Wood Hog Parts Manual is incorporated herein by reference in its entirety. The illustrated wood hog includes a stacked-plate rotor with removable hammer inserts. The illustrated wood hog includes a variety of optional features and components that are not necessary for implementation of the present invention. The present invention is not limited to use on or in connection with this specific wood hog or the specific rotor shown in the illustrations. To the contrary, the various features and aspects of the present invention are well suited for incorporation into a wide variety of wood reduction machines and a wide variety of rotors. For example, the present invention may be incorporated into essentially any wood reduction apparatus in which it may be desirable to selectively change the orientation at which materials are fed into the mill.
A wood reduction apparatus 10 in accordance with an embodiment of the present invention is shown in
Referring now to
As noted above, the wood grinder 10 includes an infeed assembly 14 having a bed 24 fitted with feed chains 54a-d that are power driven t move wood waste into the hammermill 18. The bed 24 of the illustrated embodiment generally includes a substantially horizontal surface configured to support the feed chains 54a-d. The bed 24 may be covered with wear components 60 that form the interface between the feed chains 54a-d and the bed 24. The wear components 60 may be sheets of metal or may be manufactured from low friction wear materials. The bed 24 maybe divided by dividers 62a-c into separate tracks 64a-d—one between each pair of adjacent feed chain 54a-d. In the illustrated embodiment, the infeed assembly 14 includes four feed chains 54a-d arranged side-by-side along the bed 24. In this embodiment, each feed chain 54a-d is slidably positioned into a corresponding track 64a-d in the bed 24. The dividers 62a-d help to hold the chains 54a-d in their respective tracks 64a-b and to reduce the possibility of unwanted interaction between adjacent chains 54a-d. The feed assembly 14 includes a feed chain drive assembly 66. The feed chain drive assembly 66 generally includes a drive shaft (not shown) carrying a plurality of drive sprockets (not shown), an idler shaft 56 carrying a plurality of the idler wheels 58 and a drive motor (not shown) coupled to the drive shaft. The drive shaft (not shown) and idler shaft 56 are disposed at opposite longitudinal ends of the bed 24. The feed chains 54a-d extend around the drive sprockets at one end and around idler wheels at the other. The drive shaft is coupled to a drive motor (not shown) so that movement of the chains 54a-d is achieved through movement of the drive motor. The drive motor (not shown) may be coupled to the drive shaft (not shown) using a gear assembly (not shown) that provides the desired combination of torque and speed. The drive motor (not shown) may be essentially any motor capable of providing sufficient torque to move the feed chains 54a-d and the material carried by the chains 54a-d, such as a hydraulic motor or an electric motor. If desired, the drive motor (not shown) may be operated by a control system that allows manual and/or automatic control over the speed and direction of the feed chains 54a-d. Although the illustrated embodiment includes feed chains, the infeed assembly 14 may alternatively include one or more feed belts or other mechanisms capable of moving wood waster over the bed 24 into the hammermill 18.
Referring now to
As shown in
As perhaps best shown in
As noted above, the infeed assembly 14 includes a pair of actuators 82 for moving the wall segments 70, 72 between the retracted and extended positions (See
The actuator 82 of the illustrated embodiment generally includes a linear actuator 108 and a linkage 110. The linkage 110 is connected between a fixed point on the superstructure 12 and the free end 76 of the wall segment 70 so that operation of the linkage 110 results in movement of the free end 76 with respect to the superstructure 12. In the illustrated embodiment, the linear actuator 108 is a generally conventional double-acting hydraulic cylinder, but it could be essentially any other actuator (liner or non-linear) capable of operating the linkage 110 to move the wall segment 70 between extended and retracted positions. The illustrated linkage 110 is a hinge linkage, but it could be essentially any linkage that is capable of translating movement of the linear actuator 108 into movement of the wall segment 70. The hinge linkage 110 generally includes an inner arm 130 and an outer arm 132 that are pivotally joined along a hinge 134. The inner arm 130 includes upper and lower hinge bars 136, 138 that are coupled by a plate 140. The inner arm 130 terminates in a pin eye 117. The inner arm pin eye 117 is coupled to the clevis assembly 121 on the sidewall 50 by a pin 147. The pin 147 allows the inner arm 130 to pivot with respect to the sidewall clevis assembly 121 during operation of the actuator 82. Similarly, the outer arm 132 includes upper and lower hinge bars 142 and 144 that are coupled by a plate 146. Like the inner arm 130, the outer arm 132 terminates in a pin eye 116. The pin eye 116 is coupled to the clevis assembly 114 on the wall segment 70 by a pin 146. The pin 146 allows the outer arm 132 to pivot with respect to the wall segment 70 during operation of the actuator 82.
The hydraulic cylinder 108 is pivotally connected between a fixed point on the superstructure 12 and the hinge 134 of the linkage 110. More specifically, one end of the hydraulic cylinder 108 is connected to a clevis 120 or other mounting structure affixed to the superstructure 12. The clevis 120 may be a flange-mounted clevis that is welded or otherwise secured to a vertical support in the sidewall vertical framework. The hydraulic cylinder 108 of the illustrated embodiment includes a pin eye 118 that is secured to the clevis 120 by a clevis pin 122. The opposite end of the hydraulic cylinder 108 in the illustrated embodiment is directly secured to the hinge pin 124 of the linkage 110. As shown, the rod 126 of the hydraulic cylinder 108 terminates in a rod eye 128. The hinge pin 124 is fitted through the rod eye 128 to intersecure the hydraulic cylinder 108 and the linkage 110.
Although the infeed assembly 14 of the illustrated embodiment includes a pair of movable wall segments 70, 72, the infeed assembly may include only a single movable wall segment. For example, in some applications, movable wall segment 70 may be eliminated leaving only a single movable wall segment (e.g. wall segment 72) angling inwardly toward the hammermill 18.
The actuators 82, and consequently the position of the wall segments 70, 72, may be controlled by an automated control system (not shown). For example, a control button or other operator input device (e.g. key board, touch screen or mouse) may be used to direct a control computer to extend or retract the wall segments 70, 72. A single input may be used to dictate the position of both wall segments 70, 72. In this embodiment, the control computer extends/retracts both wall segments 70, 72 in response to a single operator input. Alternatively, control over the wall segments 70, 72 may be segregated so that a separate operator input is required for each wall segment 70, 72. As an alternative to the automated system, the wall segments 70, 72 may be operated through manual operation of appropriate controls. For example, each hydraulic cylinder may be extended and retractor through manual operation of a corresponding conventional hydraulic control valve. In this alternative, an operator may manually operate a 4-way hydraulic valve coupled to the hydraulic cylinders 108 to extend or retract the wall segments 70, 72. A single hydraulic valve may be used to control both hydraulic cylinders, or separate valves may be used to separately control the cylinders. In yet another alternative embodiment, the wall segments 70, 72 may be manually extended and retracted. In this embodiment, the hydraulic cylinders may be eliminated and the wall segments 70, 72 may be manually moved into the correct position and locked in place, for example, by locking the linkage in the desired position.
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element(s) of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
This application claims the benefit of U.S. Provisional Application 61/222,717, entitled FEED ASSEMBLY FOR WOOD REDUCTION APPARATUS, which was filed on Jul. 2, 2009.
Number | Date | Country | |
---|---|---|---|
61222717 | Jul 2009 | US |