Reference is made to commonly-assigned U.S. patent application Ser. No. 13/186,829 (now U.S. Publication No. 2013/0022373), filed Jul. 20, 2011 herewith, entitled METHOD OF USING FEED AUGER WITH PADDLES, by Bucks et al.; the disclosure of which is incorporated herein.
The present invention relates to electrostatography, including electrography and electrophotography, and more particularly, to the design of a development system with multiple augers for an electrophotographic printer.
The three channel development system used in electrophotographic printers has a development roller that moves developer containing toner into proximity with a primary imaging member, usually a photoconductor; and a first channel containing a feed auger, a second channel containing a second auger, a third channel containing at least a third auger, and possibly a fourth auger. The primary imaging member is used for forming an electrostatic image. The developer used in development systems of this type usually contains magnetic particles and marking particles. The marking particles are removed from the development system to form an image on the primary imaging member.
The flow of developer through the three channel development system is such that developer is fed from the third channel to a first end of the feed auger in the first channel. As the developer travels longitudinally down the length of the feed auger, a portion of the developer is fed transversely from the feed auger to the development roller to produce a layer of developer on the development roller. The remainder of developer in the first channel continues to travel longitudinally down the length of the feed auger.
To produce a uniform image, the layer of developer on the development roller should be uniform along its length. The developer that is fed to the development roller moves over the development roller and is not returned to the feed auger but instead drops into the second auger in the second channel. Consequently, the volume of developer in the first channel decreases along the length of the first channel in the direction of developer flow along the first channel.
Developer moves longitudinally in the same direction in both the first channel and the second channel, from the first end of the augers to the second end, which is at the rear or drive end of the development system. At the rear of the development system, the developer collected by the second channel and the remaining developer in the first channel are both dropped into the third channel. It is also at this point that replenishment marking particles are added to the developer to replace the marking particles that have been applied to the primary imaging member. The developer is moved longitudinally along the third channel by the third auger, or possibly by a third and forth auger acting together, toward the first end of the feed auger. The developer that has traveled the length of the third channel is fed to the first end of the feed auger in the first channel, so that the developer is cycled continuously from the first channel to the development roller, from the first and second channels to the third channel, and from the third channel to the first channel while the development system is running.
In comparison, two channel development system designs often have the characteristic that developer that has traveled over the development roller is dropped back into the channel from which it was fed to the development roller. Some of this developer will have had marking particles removed by the image. In other words, the concentration of marking particles in the developer is reduced as the developer is used for image development, returned to the feed auger, and subsequently travels down the feed auger of a two channel development system. As the toner concentration decreases, the developed mass and image density also decrease undesirably.
An advantage of the three channel design compared to a two channel design is that the marking particle concentration is maintained down the length of the first channel. However, the volume of developer in the first channel does not remain constant down its length, usually resulting in more developer on the development roller near the first end of the feed auger, where there is a relatively large volume of developer in the first channel. Near the second end of the feed auger, where there is a relatively small volume of developer, there is usually less developer on the development roller.
It is advantageous to have a constant mass flow of developer at any point along the entire length of the development roller as well as having a constant marking particle concentration in the developer that is presented to the primary imaging member via the development roller. Specifically, it is advantageous to have a means of maintaining the developer feed to the development roller despite the reduction in developer volume down the length of the first channel.
Briefly, according to one aspect of the present invention, a development system for an electrophotographic printer with multiple augers containing a development roller and a first channel contains a feed auger and developer, with a plurality of paddles attached to the feed auger, at least some of the paddles increase in size with respect to a previous paddle along a direction of developer flow. This arrangement of paddles ensures that a uniform layer of developer is formed on the development roller despite the volume of developer in the first channel decreasing along the length of the first channel in the direction of developer flow.
The invention and its objects and advantages will become more apparent in the detailed description of the preferred embodiment presented below.
The present invention will be directed in particular to elements forming part of, or in cooperation more directly with the apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
For example, a full-color image can be made using marking particles that function as ink containing typical cyan, magenta, yellow, and black subtractive primary colorants such as pigment particles or dyes. The marking particles are contained in a development system that develops an electrostatic latent image and is in proximity to a cylindrical primary imaging member or a frame of a primary imaging member in the form of a continuous web. Additional marking particles corresponding to specialty toners or inks are contained in one of a plurality of development systems, any one of which can be brought into proximity with a primary imaging member bearing an electrostatic latent image and convert that electrostatic latent image into a visible image. For example, the electrophotographic engine shown in
For example, if clear toner is commonly used as a marking particle by a particular EP engine, the fifth development system 10E could contain clear toner. Alternatively, other marking particles that would be commonly used throughout a variety of jobs can be contained in the fifth EP module. The sixth EP module 120F is also capable of selectively printing a specialty marking particle. Images produced with specialty marking particles include transparent, raised print, MICR magnetic characters, specialty colors and metallic toners as well as other images that are not produced with the basic color marking particles.
Development systems suitable for use in this invention include dry development systems containing two component developers such as those containing both marking particles and magnetic carrier particles. The development systems used for two component development can have either a rotating magnetic core, a rotating shell around a fixed magnetic core, or a rotating magnetic core and a rotating magnetic shell. It is preferred that the marking particles used in practicing this invention are toner that is a component of dry developer. Marking particles are removed from the development system when images are printed. Replacement marking particles are added to the development systems 10A-10F by replenishment stations 158, each of which contains the appropriate marking particle.
In the example shown in
The receiver sheets are held in the printer at a paper tray (paper source) 105 and, in the example shown, enter the paper path 106 so as to travel initially in a counterclockwise direction. The paper could also be manually input 190 from the left side of the electrophotographic engine. The printed image is transferred from the ITM to the receiver and the image bearing receiver then passes through a fuser 170 where the image is permanently fixed to the receiver. The image then enters a region where the receiver either enters an inverter 162 or continues to travel counterclockwise. If the receiver enters the inverter, it travels clockwise, stops, and then travels counterclockwise back onto the duplex path 180. This inverts the image, thereby allowing the image to be duplexed. Prior to the inverter is a diverter 152 that can divert the receiver sheet from the inverter and sends it along the paper path in a counterclockwise direction. This allows multiple passes of the receiver on the simplex side, as might be desired if multiple layers of marking particles are used in the image or if special effects such as raised letter printing using large clear toner are to be used. Operation of the diverter to enable a repeat of simplex and duplex printing can be visualized using the duplex path 180 shown in
It should be noted that, if desired, the fuser 170 can be disabled so as to allow a simplex image to pass through the fuser without fusing, if desired. This might be the case if an expanded color balance in simple printing is desired and a first fusing step might compromise color blending during the second pass through the EP engine. Alternatively, a fusing system that merely tacks, rather than fully fuses, an image and is known in the literature can be used if desired such as when multiple simplex images are to be produced. The image can also be sent through a subsystem that imparts a high gloss to the image, as is known in the literature and is described in co-owned U.S. Pat. Nos. 7,212,772; 7,324,240 and 7,468,820 as well as U.S. Publications 2008/159786 and 2008/0050667, which are hereby incorporated by reference.
Referring now to
Referring now to
In the preferred embodiment, the length of the paddles 28 increases along the axis of the feed auger 32 in the direction of flow of developer 18 to compensate for the decreasing amount of developer along the axis of the feed auger. In accordance with the invention, at least some of the paddles increase in size with respect to a previous paddle along a direction of developer flow. According to another aspect of the invention, the paddles monotonically increase in size. This can be accomplished by a length of the paddles increasing in an axial direction of flow or by an area of the paddles increasing in a direction of flow. In
Referring now to
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4980724 | Tanaka | Dec 1990 | A |
4989539 | Ichikawa | Feb 1991 | A |
5249019 | Ishida et al. | Sep 1993 | A |
5572297 | Kawashima | Nov 1996 | A |
5842090 | Mikawa | Nov 1998 | A |
6099159 | Yoshida et al. | Aug 2000 | A |
6122472 | Sako et al. | Sep 2000 | A |
6266504 | Katoh | Jul 2001 | B1 |
6421516 | Kinoshita et al. | Jul 2002 | B1 |
7079793 | Amano et al. | Jul 2006 | B2 |
7212772 | Kasiske | May 2007 | B2 |
7313348 | Hart et al. | Dec 2007 | B2 |
7324240 | Ng | Jan 2008 | B2 |
7466944 | Bessho | Dec 2008 | B2 |
7468820 | Ng | Dec 2008 | B2 |
7634215 | Imamura et al. | Dec 2009 | B2 |
7647009 | Deguchi et al. | Jan 2010 | B2 |
20040179865 | Nishiyama | Sep 2004 | A1 |
20070098450 | Hart et al. | May 2007 | A1 |
20070127951 | Ishikawa et al. | Jun 2007 | A1 |
20080050667 | Lobo et al. | Feb 2008 | A1 |
20080159786 | Tombs et al. | Jul 2008 | A1 |
20110311279 | Okazaki et al. | Dec 2011 | A1 |
20120100479 | Aslam et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130022372 A1 | Jan 2013 | US |