1. Field
The subject matter discloses herein relates to devices and methods of processing data received from a transmission medium. In particular, the subject matter disclosed herein relates to processing signals received from a communication channel in the presence of noise and distortion.
2. Information
To recover information from a signal received from noisy communication channel, receivers typically employ filtering and equalization techniques to enable reliable detection of the information. Decreases in the cost of digital circuitry have enabled the cost effective use of adaptive digital filtering and equalization techniques that can optimally “tune” a filter according to the specific characteristics of a noisy communication channel.
The coefficients c0, c2 and c4 are typically updated to approximate a least mean square error (LMS) filter for the particular FIR filter configuration. A limiting circuit 30 may provide a bi-level detection of symbols in the equalized output from the summing circuit 22 and differencing circuit 28 may provide a difference between the filtered output and the detected symbol as an “error.” A limiting circuit 26 provides a sign of the error to each of three multiplication circuits 25 for updating the coefficients c0, c2 and c4. Each of the multiplication circuits 25 multiplies the sign of the error with the sign of a corresponding signal tap of the digital signal (as detected at a limiting circuit 18) and a sample and integrating circuit 24 generates an updated coefficient.
Non-limiting and non-exhaustive embodiments of the present invention will be described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in one or more embodiments.
“Machine-readable” instructions as referred to herein relates to expressions which may be understood by one or more machines for performing one or more logical operations. For example, machine-readable instructions may comprise instructions which are interpretable by a processor compiler for executing one or more operations on one or more data objects. However, this is merely an example of machine-readable instructions and embodiments of the present invention are not limited in this respect.
“Machine-readable medium” as referred to herein relates to media capable of maintaining expressions which are perceivable by one or more machines. For example, a machine readable medium may comprise one or more storage devices for storing machine-readable instructions or data. Such storage devices may comprise storage media such as, for example, optical, magnetic or semiconductor storage media. However, this is merely an example of a machine-readable medium and embodiments of the present invention are not limited in this respect.
“Logic” as referred to herein relates to structure for performing one or more logical operations. For example, logic may comprise circuitry which provides one or more output signals based upon one or more input signals. Such circuitry may comprise a finite state machine which receives a digital input and provides a digital output, or circuitry which provides one or more analog output signals in response to one or more analog input signals. Such circuitry may be provided in an application specific integrated circuit (ASIC) or field programmable gate array (FPGA). Also, logic may comprise machine-readable instructions stored in a memory in combination with processing circuitry to execute such machine-readable instructions. However, these are merely examples of structures which may provide logic and embodiments of the present invention are not limited in this respect.
A “receiver” as referred to herein relates to a system, apparatus or circuit to process a signal received from a transmission medium. For example, a receiver may comprise circuitry or logic to extract information encoded in a signal received from a transmission medium. However, this is merely an example of a receiver and embodiments of the present invention are not limited in this respect.
An “analog signal” as referred to herein relates to a signal having a value that may change continuously over a time interval. For example, an analog signal may be associated with one or more voltages where each voltage may change continuously over a time interval. An analog signal may be sampled at discrete time intervals to provide a “digital signal” where one or more discrete signal values are associated with each discrete time interval and, unlike an analog signal, do not change continuously between such discrete time intervals. However, this is merely an example of an analog signal as contrasted from a digital signal and embodiments of the present invention are not limited in these respects.
A “symbol” as referred to herein relates to a representation of information encoded in a signal transmitted in a transmission medium. For example, a symbol may represent a “one” or “zero” in a single information “bit” or multiple bits according to a symbol mapping defined for transmitting information in a communication channel. Accordingly, a transmitted symbol may be associated with a “symbol value” as defined by the symbol mapping. Upon receipt of a signal transmitting an encoded symbol, a receiver may extract an “estimated symbol value” to represent an estimate of the symbol value of the actual symbol transmitted by the signal in the communication channel. In the presence of noise in the communication channel, an estimated symbol value may deviate from the symbol value of the actual symbol transmitted by an “error.” For a symbol value characterized as having a magnitude, an error associated with an estimated symbol value may be associated with a “sign” to represent whether the estimated symbol value exceeds or does not exceed the symbol value of the actual symbol transmitted. An “error signal” may be generated to provide information indicative of at least one aspect of a detected error. Such an error signal may include, for example, a sign of an error or a magnitude expressing a difference between a measured signal and an actual signal.
Symbols transmitted in a signal may be temporally spaced on “symbol” intervals such that during each distinct symbol interval the signal may transmit a corresponding symbol. An “equalized signal” as referred to herein relates to a signal that has been conditioned or processed. For example, a signal received from a communication channel in the presence of noise and distortion may be processed to enable or improve the detection of symbols being transmitted in the received signal. However, this is merely an example of an equalized signal and embodiments of the present invention are not limited in these respects.
A signal may be “tapped” to provide signal taps or delayed versions of a signal to be processed. A “multi-tap filter” as referred to herein relates to circuitry or logic to process a signal by individually processing the signal at distinct signal taps and combining the individually processed signal taps to provide an equalized signal. For example, a multi-tap filter may comprise one or more delay elements to generate one or more signal taps. An amplitude of each of the signal taps may then be scaled by a corresponding “coefficient.” The scaled versions of the signal taps may then be combined to provide an equalized output signal. However, this is merely an example of a multi-tap filter and embodiments of the present invention are not limited in these respects.
A “correlation signal” as referred to herein relates to a result of a combination of two or more signals. A correlation signal may be the result of a multiplication of two or more signals, or a result of a logical operation on the two or more signals as inputs. In one particular example, a correlation signal may be the result of a combination of an error signal and a data signal. However, this is merely an example of a correlation signal and embodiments of the present invention are not limited in these respects.
“Inter-symbol timing information” as referred to herein relates to information that indicates the timing of a signal transmitting encoded symbols at set symbol intervals. Such inter-symbol timing information may be transmitted in a clock signal having a period that is synchronized with a period of the symbol intervals in the signal transmitting the encoded symbols. However, this is merely an example of inter-symbol timing information and embodiments of the present invention are not limited in this respect.
A “clock and data recovery circuit” as referred to herein relates to a circuit that is capable of detecting data symbols encoded in a symbol and timing information. For example, a clock and data recovery circuit may detect symbols in an equalized signal and inter-symbol timing information that is synchronized to symbol intervals in the signal. The clock and data recovery circuit may then generate a clock signal that is synchronized with the inter-symbol timing information. However, this is merely an example of a clock and data recovery circuit, and embodiments of the present invention are not limited in these respects.
Briefly, embodiments of the present invention relate to a multi-tap filter to apply each of a plurality of coefficients to a corresponding tap of an analog input signal to generate an equalized analog signal. A coefficient update circuit may update the coefficients based, at least in part, upon a comparison of the equalized analog signal with one or more symbol values at an instance determined by inter-symbol timing information. However, this is merely an example embodiment and other embodiments of the present invention are not limited in these respects.
According to an embodiment, coefficient update logic 110 may provide periodically updated coefficients to the multi-tap filter based upon estimated errors in the detection of symbols from the equalized analog output signal and the inter-symbol timing information 118. The FFF 108 provides an equalized analog output signal from an analog input signal without digitally sampling the analog input signal. Accordingly, no analog to digital conversion of the analog input signal is needed prior to filtering at the multi-tap filter. A functional controller (FC) 106 may initialize coefficients in the FFF 108 and the coefficient update logic 110 at startup.
According to an embodiment, the FC 106 may control initial loop operation by disabling any dynamic operation of the coefficient update logic 110 and force the coefficients of FFF 108 to predetermined values. For example, the FC 106 may detect a dynamic condition (e.g., start up) and set the coefficients of the FFF 108 to the predetermined values. The FC 106 may then inhibit the coefficient update logic 110 from updating the coefficients from the predetermined values for a time period. In one embodiment, the FC 106 may enable the coefficient update logic 110 to update the coefficients in response to recovery of the inter-symbol timing information by the CDR circuit 114. Alternatively, the FC 106 may enable the coefficient update logic 110 to update the coefficients following a duration based upon an estimated time for CDR circuit 114 to recover the inter-symbol timing information.
While the receiver 100 is shown receiving an analog input signal from a photodiode and transimpedance amplifier, it should be understood that the architecture of receiver 100 may be adapted for processing an analog input signal from different transmission media. For example, other embodiments may be adapted for processing an analog input signal received as a differential signaling pair signal over unshielded twisted wire pair cabling or over a device to device interconnection formed in a printed circuit board. Other embodiments may be adapted to reading data from high density storage devices (e.g., optical storage media) to enable increased data storage density by equalizing distortion from the dense packing of bits on the high density devices. However, these are merely examples of how a receiver may be implemented for recovering information from a signal and embodiments of the present invention are not limited in these respects.
The receiver 100 may be included as part of an optical transceiver (not shown) to transmit or receive optical signals in an optical transmission medium such as fiber optic cabling. The optical transceiver may modulate a transmitted signal or demodulate a received signal 112 according to any optical data transmission format such as, for example, wave division multiplexing wavelength division multiplexing (WDM) or multi-amplitude signaling (MAS). For example, a transmitter portion of the optical transceiver may employ WDM for transmitting multiple “lanes” of data in the optical transmission medium.
The FFF 108 and LIA 112 may form a physical medium dependent (PMD) section of the receiver 100. Such a PMD section may also provide power from a laser driver circuit (not shown) to a laser device (not shown). The CDR circuit 114 may be included in a physical medium attachment section coupled to the PMD section. Such a PMA section may also include de-multiplexing circuitry (not shown) to recover data from a conditioned signal received from the PMD section, multiplexing circuitry (not shown) for transmitting data to the PMD section in data lanes, and a serializer/deserializer (Serdes) for serializing a parallel data signal from a layer 2 section (not shown) and providing a parallel data signal to the layer 2 section 108 based upon a serial data signal provided by the CDR circuit 114.
According to an embodiment, the layer 2 section may comprise a media access control (MAC) device coupled to the PMA section at a media independent interface (MII) as defined IEEE Std.802.3ae-2002, clause 46. In other embodiments, the layer 2 section may comprise forward error correction logic and a framer to transmit and receive data according to a version of the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) standard published by the International Telecommunications Union (ITU). However, these are merely examples of layer 2 devices that may provide a parallel data signal for transmission on an optical transmission medium, and embodiments of the present invention are not limited in these respects.
The layer 2 section may also be coupled to any of several input/output (I/O) systems (not shown) for communication with other devices on a processing platform. Such an I/O system may include, for example, a multiplexed data bus coupled to a processing system or a multi-port switch fabric. The layer 2 section may also be coupled to a multi-port switch fabric through a packet classification device. However, these are merely examples of an I/O system which may be coupled to a layer 2 device and embodiments of the present invention are not limited in these respects.
cj(k+1)=cj(k)+Δj×sgn[ε(k)]×sgn[bj(k)]
where:
According to an embodiment, the equalized analog output signal 318 may be received at a CDR circuit 328 to provide recovered symbol information 320 and inter-symbol timing information as a clock signal Clk(t). An error generation circuit 310 may generate the sign of the estimated error of the equalized analog output signal sgn[ε(k)] for the equalized analog output signal in period k based upon the equalized analog output signal 318 and the inter-symbol timing information. For each of the coefficients cj(k) in the present period, a limiting circuit 322 and digital delay elements 324 may generate a corresponding sign of the signal tap of the analog input signal aj(k) to be scaled by the coefficient cj(k). Then, for each of the coefficients cj(k), a corresponding accumulation circuit 312 may update the coefficient cj(k) as the coefficient cj(k+1) to scale aj(k+1) in the future period.
According to an embodiment, differencing circuits 402 and 404 may receive the equalized analog output signal d(t) to output a difference between the equalized analog output signal d(t) and each of the positive symbol +γ and the negative symbol −γ. A limiting circuit 410 may also receive the equalized analog output signal d(t) to generate an estimate of a symbol value (e.g., between bi-level symbols +1 or −1) encoded in the analog input signal. The outputs of the differencing circuits 402 and 404, and the limiting circuit 410 are applied to inputs of a corresponding flip-flop circuit 406. Each of the flip-flop circuits 406 may also receive pulses of the clock signal Clk(t) to mark a precise instance of when sgn[ε(k)] is to be determined (e.g., the leading edge of Clk(t) pulses to mark an instance in a symbol interval for the detection of a symbol). In response to a setting of the flip-flop circuits 406, a multiplexer (MUX) circuit 408 may receive from the differencing circuit 402 sgn[ε(k)] if the estimate of the symbol value is positive, from the differencing circuit 404 sgn[ε(k)] if the estimate of the symbol value is positive and from the limiting circuit 410 an estimate of the symbol value. Accordingly, based upon the estimate of the symbol value (e.g., as being positive or negative) the MUX 408 may select sgn[ε(k)] as being positive or negative based upon the output of either differencing circuit 402 or differencing circuit 404.
While there has been illustrated and described what are presently considered to be example embodiments of the present invention, it will be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from the true scope of the invention. Additionally, many modifications may be made to adapt a particular situation to the teachings of the present invention without departing from the central inventive concept described herein. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed, but that the invention include all embodiments falling within the scope of the appended claims.
The subject matter disclosed herein relates to U.S. patent application Ser. Nos. (attorney docket numbers 042390.P17559, 042390.P18170, 042390.P17154 and 042390.P 17155), filed concurrently with the present application and incorporated herein by reference.